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Abstract

Digital telecommunications play a vital role in our society. However, some aspects of
their security have not been fully investigated yet. In the current work we show that
the use of the voice activity detection technique makes encrypted telephone conver-
sations vulnerable to attacks against the anonymity of speakers. This technique is
utilized in methods for reducing the amount of transmitted voice data and is widely
applied in mobile communications and in VoIP. We propose several methods for
speaker recognition which are based on analysis of encrypted telephone traffic. We
conducted experiments using voice recordings of 13 speakers. Our best-performing
classifier achieved a recognition rate of 73%, in contrast to an expected recognition
rate of 7.7% of random guessing.
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1 Introduction

In the past 20 years, digital telecommunications have seen a rapid development.
After the introduction of the first GSM cellular network in 1991, mobile communi-
cations have spread so much that in 2008 the estimated number of mobile cellular
subscriptions worldwide was over 4 billion [44]. Around the same time, in 1989 the
first computer network for commercial use was launched, resulting in what is now
known as the Internet. The rapid growth of the Internet boosted the development
of new technologies for communication and in the late 1990s a technology known
as Voice over Internet Protocol (VoIP) emerged, which allows transmission of voice
over computer networks. The wide deployment of those technologies for telecommu-
nication carries serious concerns about two main security aspects – the secrecy of
the transmitted data and the privacy of the users of those technologies. To address
those concerns, developers of telecommunication technologies apply encryption to
the transmitted data. If the applied encryption scheme is considered secure, it is
supposed that the security of the encrypted data is granted.

However, there exist the so-called side-channel attacks, which exploit certain im-
plementation properties of the systems and make it possible to bypass the used
encryption. In the last several years a new class of side-channel attacks based on
traffic analysis of encrypted telephone conversations was discovered. Those attacks
are targeted against VoIP conversations encrypted using a length-preserving en-
cryption scheme. They exploit a widely used bandwidth-saving sound encoding
technique called variable bit-rate (VBR), which allows varying of the amount of bits
per second (bit-rate) in an encoded sound file. Wright et al. [47] show that analy-
sis of the Internet traffic of encrypted VBR-encoded VoIP conversations can reveal
the language spoken in the conversations. The severity of this security threat is
underlined by later work of Wright et al. [46]. They show that involved analysis
of encrypted VBR-encoded VoIP traffic makes it possible to uncover the content of
whole spoken phrases in a conversation.

Inspired by those findings, we developed a further attack based on traffic analysis
of encrypted telephone conversations. Our attack is targeted against the anonymity
in encrypted telephone conversations. We exploit a widely deployed technique called
voice activity detection (VAD), which distinguishes between segments in a conver-
sation containing voice and the rest of the conversation, containing silence or some
background noise. VAD is used both in mobile communications and in VoIP. Note
that the use of VAD instead of VBR is more general because pauses in speech are
encoded by VBR using the lowest several bit-rates [47] and therefore attacks that
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2 Chapter 1. Introduction

Figure 1.1: The output of the Speex codec and the Internet traffic of the Skype
VoIP client, corresponding to the audio signal of a sentence taken from
the inaugural address of John F. Kennedy from January 20th, 1961

exploit the use of VAD can be easily transferred to VBR-technologies. Furthermore,
VAD is used not only in VoIP, but also in mobile communications, and therefore the
attack discussed in the current work has a broader application area than previous
attacks exploiting VBR. The operation of VAD and VBR is illustrated in Figure 1.1,
where the output of the Speex sound codec [48] in VAD mode is compared to the
Internet traffic generated by the Skype VoIP client [24], which uses VBR codecs.

The objective of our attack is revealing the identity of an unknown speaker. This
task is called speaker recognition. For the proposed attack, we use durations of pause
and voice segments, which, albeit not commonly, have been considered in previous
research of speaker recognition (see Chapter 2).

1.1 Attack overview

In our attack against the anonymity in encrypted telephone conversations, we as-
sume a scenario including two actors. One is conducting encrypted telephone con-
versations using either the GSM network, or VoIP. Another one is eavesdropping on
the encrypted traffic. We call the first one the victim, because he is being spied on,
and second one the attacker.

We divide the process into two phases – a training and an attack phase. In the
training phase, the victim performs conversations with N different people and reveals
their identity to the attacker. In the attack phase, the victim picks one of the N
speakers uniformly at random and makes a telephone conversation with him. The
goal of the attacker is to find out which one of the N speakers the victim spoke to.
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We have the precondition that voice activity detection (VAD) is used when data is
transmitted and that the attacker is able to distinguish whether the VAD-algorithm
has classified segments of the conversation as voice or as a pause. Conversations
are assumed to be encrypted. We don’t require the encryption scheme to be length-
preserving, as it is the case in the attacks proposed by Wright et al. [47, 46]. However,
it has to allow distinguishing between voice and pause segments in a telephone
conversation. All meta-data (IP headers, application layer headers, etc.) is assumed
to be of an approximately known size.

In this setting, the attacker inspects the collected traffic in order to extract the
necessary data and conduct the attack. The attack has the following steps:

1. Distinguish segments of traffic corresponding to voice from segments corre-
sponding to pauses. For this, some knowledge about the way voice data is
transported (see Chapter 3).

2. Compute the durations of voice and pause segments, obtaining a stream of
alternating voice and pause segment durations. Those durations can be mea-
sured either in milliseconds or in an application-specific measure, such as num-
ber of audio packets.

3. The traffic is analyzed accordingly (see Chapter 4):

(a) In the training phase, the attacker uses the segment durations to train the
underlying models for each speaker.

(b) In the attack phase, the attacker uses the trained models and the observed
segment durations corresponding to the speech produced by the unknown
speaker to compute the most likely identity of the speaker.

1.2 Outline

This work is organized in 6 chapters. Chapter 2 presents some background from
linguistics that justifies the features we have used for speaker recognition. Chapter
3 gives technical details about how sound is encoded and transmitted in telecom-
munication technologies that use VAD. Chapter 4 describes the classifiers used in
the proposed attack. The experiments we executed and their results are shown in
Chapter 5. We conclude in Chapter 6.





2 Linguistic Background for Speaker
Recognition

Speaker recognition is the task of discovering the identity of a speaker from a set
of known speakers using passages of his or her speech. There has been significant
research in obtaining good algorithms for speaker recognition [9, 35]. An extensive
overview on speaker recognition is to be published in [6]. Current speaker recogni-
tion technologies are deemed accurate enough so that human speech is being used
as a biometric for confirming or rejecting a claimed identity, or for determining who
an unknown speaker is. Such technologies have been applied in systems that re-
quire authentication of users, as well as in forensic and intelligence applications [26].
Organizations which have deployed speaker recognition technologies include AT&T,
British Telecom, VeriSign, Visa and the US Department of Homeland Security [27].

In our study we investigate speaker recognition in encrypted voice streams. We
construct an attack against the anonymity in encrypted telephone conversations,
using durations of voice and pause segments in speech. We refer to features related
to durations in speech or pauses as temporal features. In the following, we summarize
previous research on speaker recognition and other types of speaker classification,
focusing on the use of temporal features for those tasks.

2.1 Features used for speaker recognition

Several different types of features are used for speaker recognition. One set of
features that is traditionally related to this task reflects acoustic voice parameters.
We refer to such features as lower-level features. Those features are gained from the
frequency spectrum of speech and are estimated from a short (usually 10-50 ms)
segment of the waveform [36]. Common lower-level features include mel-frequency
cepstral coefficients and linear prediction-based cepstral coefficients [43].

Recently, there has been considerable research in another set of features, the so-
called higher-level features, which are based on information gained at longer time
spans [42]. Higher-level features include several types of features which are not
connected to the human voice, such as features based on phonetics, lexical usage
and prosody. Such features were shown to have significant discriminatory ability and
although they lack the accuracy of lower-level features, they are believed to reveal
aspects of a speaker’s identity that cannot be captured by lower-level features [33].
Systems based on combinations of higher and lower-level features have shown better
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6 Chapter 2. Linguistic Background for Speaker Recognition

results in distinguishing speakers than systems based only on traditional lower-level
features [30, 14].

2.2 Temporal features for speaker recognition

Many of the proposed higher-level features for speaker recognition are based on
temporal properties of speech, which are of interest to our work. Ferrer et al. [14]
consider durations of phones (i.e., the smallest distinguishable sound units in speech)
occurring in speech, as well as in-word phone durations. They conclude that those
features are highly effective knowledge sources for automatic speaker identification
and their use in combination with traditional speaker recognition features achieves a
reduction in identification error of 50%. Peskin et al. [30] consider so-called prosodic
features, which describe patterns of stress and intonation in languages. Among the
19 prosodic features they examined, six were related to word, phone and segmental
durations and five were related to pause durations and pause frequency. Those
prosodic features, especially in a combination, were found to add new and useful
information to the speaker recognition task.

Patterns in the interaction between speakers in a conversation (also called dialogic
features) were also considered for speaker recognition [30, 34]. Such dialogic features
include duration of the turns in a conversation, as well as number of words in a
turn. Although conversational patterns haven’t given as good results for speaker
recognition as prosodic patterns, those features were considered to be a promising
area for further investigation.

2.3 Temporal features for other types of classification

Speaker recognition, the task we consider in our study, is a particular type of speaker
classification. Aside from this task, there are other speaker classification tasks which
make use of temporal features of the human speech. In the following, we discuss
three such tasks.

2.3.1 Determining speaker’s age

With the advance of human age, temporal aspects of speech are strongly affected
by the age of speakers [39, 40, 25]. Features considered for determining speaker’s
age include pause duration and frequency, as well as syllable, consonant, vowel and
subphonemic durations.

Those effects can be explained by the fact that through the process of aging, var-
ious changes occur in the human body, accounting for changes in the way speech
is produced. Those changes include inadequate laryngal valving, decreased lung
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capacity, stiffening of thorax, weakening of respiratory muscles, and changes in neu-
romuscular control. They affect human coordination of articulators and breath
support and result in the need of elderly people to pause more frequently while
speaking [25, 39].

2.3.2 Determining speaker’s stress levels

Temporal features have been considered for determining a speaker’s stress levels [18].
In stressful situations, an increase in people’s respiration rate is observed. In loud,
fast, slow, clear, and angry speech, there have been found changes in the mean dura-
tion of words. Additionally, the listener’s ability to perceive a speaker’s information
context is found to be highly dependent on word and subword durations. Subword
durations include duration of vowels versus consonants and consonant presence.

2.3.3 Determining deceptive speech

Temporal features have also been considered for determining deception. The use of
silent pauses in speech, as well as the use of filled pauses (ums and uhs) have been
found to correlate more with truthful than with deceptive speech [7]. This obser-
vation can be explained by the hypothesis that deceptive speech is more carefully
planned and thus people produce less pauses when lying. This hypothesis is utilized
in several interviewing and interrogating methods (cf. [5]).

2.4 Summary

The literature presented in this chapter shows that temporal features have been used
in different types of speaker classification. For speaker recognition, those features
have shown a worse performance than classical lower-level features. For that reason,
in usual speaker recognition applications such as for authentication of users, to our
knowledge, only the combined use of temporal features with lower-level features has
been considered. Nevertheless, the presented studies indicate that the discriminatory
ability of those features may be good enough for our application domain – to enable
us conduct an attack against the anonymity in encrypted telephone conversations.





3 Digital Telephony Using Voice
Activity Detection

In modern digital telephony, sound is first encoded using a speech codec, e.g. the
GSM codec [17], G.728 [21], or Speex [48]. The encoded voice data is then trans-
mitted over a network, such as a fixed-line telephone network, a mobile network, or
as it is the case with Voice over IP (VoIP) – over a computer network.

Our attack against the anonymity in encrypted telephone conversations assumes
the use of a technique called voice activity detection (VAD), which is widely applied
in methods for reducing the amount of transmitted voice data in mobile communi-
cations and in VoIP. In mobile communications, VAD technologies are used in the
GSM standard [17], as well as in the UMTS third-generation mobile telecommuni-
cation technologies [2]. In both standards for mobile communication, VAD operates
similarly and in our work we discuss the GSM standard only.

In the following, we describe the setting in which the proposed attack can be
conducted. We give details on speech encoding and the operation of VAD in the
GSM standard and in VoIP, as well as on voice transportation. This information is
important for understanding how the attack can be performed in practice.

3.1 Speech coding

Speech produced by a speaker is recorded using a microphone. The analog sound
signal is digitalized, usually at a sampling rate of 8000 samples per second (8 kHz)
or 16000 samples per second (16 kHz). To achieve reasonable sound quality, each
sample should contain more than 8 bits; at 16 bits/sample the sound quality is
considered high [11]. The number of bits per second (bit-rate) of a digital signal
encoded at 8 kHz with 16 bits per sample would thus be 8 kHz · 16 bits/sample =
128 kbps. To reduce the bit-rate of digital signal, audio data is compressed using
compression algorithms called audio codecs, which comprise of sound coders and
sound decoders. A sound coder takes as input several digital sound samples and
compresses them to audio packets, typically at a rate fixed at between 10 ms and 50
ms. In the Speex codec an audio packet is 14.5 ms long.

9



10 Chapter 3. Digital Telephony Using Voice Activity Detection

3.2 Voice activity detection (VAD)

In a two-way conversation, roughly 63% of the time a speaker is silent [11]. Some
technologies make use of this observation and discriminate actual speech from silence
to achieve certain benefits. The technique for distinguishing voice from non-voice
in an audio recording is called voice activity detection (VAD) [32]. In the following
sections we describe the uses of VAD in mobile communications and in VoIP.

3.2.1 VAD in mobile communications

In the GSM system for mobile communications, the discontinuous transmission
(DTX) option allows halting the transmission of the signal when no voice activ-
ity is detected [45]. It is implemented in order to reduce the battery power needed
for transmission and to minimize co-channel interference. On the receiving side,
so-called comfort noise is generated during the breaks of speech, which gives the
impression to users that the call is still active. The comfort noise is generated from
parameters of the background noise, which are measured during the preceding voice
phases and are transmitted in regular intervals to the receiving side.

3.2.2 VAD in VoIP

VoIP is transmitted over packet-switched computer networks. In such networks,
efficient bandwidth utilization is a primary concern. In order to reduce network
bandwidth, VAD may be applied in two ways: so that the transmitted segments of
pause are encoded in a lower quality than segments of voice, and thus sound at a
lower bit-rate is sent over the network during pauses; or, similarly to the DTX mode
in the GSM standard, packets containing silence may not be transmitted at all.

Network overhead may be further reduced by using variable bit-rate (VBR), where
speech is encoded using one of multiple bit-rates according to the nature of the
encoded sound. VAD-coders can be seen as a type of VBR-coders using only two
distinct bit-rates. Usually, VBR codecs use the lowest bit-rates for encoding silence
[47], hence silence is similarly distinguishable in general VBR-encoded recordings as
it is in a VAD-encoded recordings. For that reason the conclusions we make about
VAD codecs can be easily transferred to VBR. Many popular VoIP applications
support VAD or VBR codecs, including Google Talk [20], Ekiga [1], Skype [24],
Twinkle [13].

3.3 Voice transportation

After voice is encoded, it is transported from the sender to the receiver using the un-
derlying network infrastructure. In the current section we present the technologies
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for voice transportation used in mobile communications and in VoIP, thus describ-
ing the setting in which the attack against the anonymity in encrypted telephone
conversations takes place.

3.3.1 Voice transportation in mobile communications

In mobile communications, voice data is transmitted between a mobile station, usu-
ally a handheld device, and a transceiver known as a base station, using a frequency
from a dedicated radio frequency range [45]. Between base stations, data is usually
transmitted using a partner network, such as the public fixed-line telephone net-
work. Figure 3.1 depicts the architecture of a mobile network. The GSM system
usually operates on 900 MHz or 1800 MHz frequency bands (known as GSM-900
and GSM-1800 respectively). In USA, Canada and other American countries, 850
MHz or 1900 MHz frequency bands are used.

Figure 3.1: Mobile network architecture

In GSM-900, the range from 890 MHz to 915 MHz is used for uplink traffic (from
the mobile station to the base station), and the 935 to 960 MHz range is used for
downlink traffic (from the base station to the mobile station). In order to provide
several simultaneous connections, GSM provides a combination of frequency division
multiplexing (FDM) and time division multiplexing (TDM). In GSM’s FDM, the
range is divided into channels that have a width of 200 kHz, thus 124 FDM channels
for uplink and 124 FDM channels for downlink traffic are provided. GSM’s TDM
uses 8 channels (time-slots) per FDM channel. Figure 3.2 shows how a physical
channel is realized in GSM using a combination of TDM and FDM.

Optionally, frequency hopping can be applied to reduce co-channel interference.
In this mode, transmitters and receivers synchronously change the frequency after
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Figure 3.2: Realization of physical channels in GSM using FDM and TDM (adapted
from [45]). The frequency spectrum is divided into frequency channels
and each frequency channel is divided into 8 time-slots.

each transmitted frame.

3.3.2 Voice transportation in VoIP

In VoIP, the encoded sound signal is transported between two or more participants
through the Internet Protocol. Session control (connection setup and teardown) are
accomplished using a control channel, usually over TCP (Transmission Control Pro-
tocol). Protocols frequently used for session control include SIP (Session Initiation
Protocol) [37] and XMPP (Extensible Messaging and Presence Protocol) [38]. A sec-
ond channel is dedicated to the transportation of speech data. This is accomplished
through an application layer protocol such as RTP (Real-time Transport Protocol)
[41], preferably through UDP (User Datagram Protocol). Some applications, most
notably Skype [24], do not use standardized protocols such as SIP, XMPP and RTP
but use their own proprietary protocols for both tasks.

3.4 Performing the attack

To perform an attack against the anonymity in encrypted telephone conversations,
we have an attacker-victim scenario, as described in Section 1.1. In the training
phase, the victim performs telephone conversations with N speakers. In the attack
phase, the victim is having a conversation with one of the N speakers and the
attacker wants to guess the speaker’s identity.

First of all, the attacker needs to find a way to eavesdrop on the telephone traffic.
Figure 3.3 depicts the attack setting in the mobile communications and in the VoIP
scenario. In the case of mobile communications (Figure 3.3(a)), the attacker has to
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(a) The attack setting against GSM (b) The attack setting against VoIP

Figure 3.3: The attack setting

capture the signal transported between the mobile station and the base station. To
accomplish this, he has to be in the proximity of the base station and to possess the
appropriate radio receivers. In the case of VoIP (Figure 3.3(b)), the attacker has
to capture the Internet traffic corresponding to the particular conversation. Likely
attackers in this scenario are participants in the same local area network or the
victim’s Internet provider.

The collected traffic can be divided into uplink traffic, which flows from the victim
to the N speakers, and downlink traffic, which flows from the N speakers to the
victim. As the task of the attacker is to recognize one of the N speakers, only
downlink traffic is relevant to the attack.

Being able to eavesdrop on telephone traffic, the attacker has to apply some
traffic analysis in order to find a way to distinguish between voice and pauses in a
conversation. After that, the attacker measures the durations of voice and pause
segments and collects a stream of alternating voice and pause segment durations.





4 Data Analysis Techniques

In order to perform an attack against the anonymity in encrypted telephone conver-
sations, the attacker first needs to collect data in the form of a stream of alternating
voice and pause segment durations. Using this data as input, the attacker makes a
guess about the identity of an unknown speaker. In the training phase, the attacker
builds probabilistic models for all speakers, based on distributions of the observed
features. In the attack phase, the attacker builds a model for the unknown speaker,
compares it to the trained models and picks the actor whose model is most similar.
In the following we describe the statistical methods used for those tasks.

4.1 Building probabilistic speaker models

The first question we are addressing is which features of the extracted data can
be used to conduct the attack and how raw data is transformed into probabilistic
models for each speaker.

4.1.1 Features

The first step of any classification task is feature selection. In our scenario, the
attacker has at his disposal a stream of durations of voice and pause segments.
Therefore, for the analysis the attacker can use the features voice segment durations,
pause segment durations, or a combination of the two features.

Only voice or pause durations

Voice segments include everything the voice activity detection (VAD) algorithm has
classified as voice (see Section 3.2). Semantically this corresponds to segments in a
conversation where someone is speaking. Pause segments, which include segments
that were not considered by the VAD algorithm to be voice, correspond semantically
to pauses, which may be silent or filled with background noise.

Combining voice and pause durations

Analyzing only voice or only pause durations would be in accord to theories claiming
that there is a high inter-speaker variability in one of those features (see Section 2.2).
However, such analysis would ignore half of the data input, thus the attacker would

15
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possibly lose one source of valuable information. For that reason, we also consider
the combined use of both features.

We assume that the collected stream of alternating voice and pause durations is
measured in number of audio packets, starting and ending with a voice segment
duration. Formally, for an odd k ∈ N, the attacker collects a stream d1, . . . , dk,
where di ∈ N corresponds to a voice duration if i is odd and to a pause duration
if i is even. To make use of both voice and pauses, we observe n-grams of segment
durations. In our experiments, we used overlapping 3-grams which we refer to
as (voice,pause,voice)-triplets. For example, if we are given a stream of segment
durations 123, 32, 83, 71, 43, we observe the 3-grams (123, 32, 83) and (83, 71, 43).

4.1.2 Optimization techniques

Having determined which features are to be used, we consider two optimization tech-
niques which are aimed at improving the performance of the classifiers – clustering
audio packets and excluding short segments.

Clustering audio packets

Audio data is usually encoded at a constant frequency and therefore the resulting
audio packets have a constant duration. For example, Speex audio packets are 14.5
ms long. For that reason, the segment durations we analyze will inevitably be a
multiple of the audio packet duration. However, this granularity may not correspond
to practically relevant semantical units. For example, in speech encoded by the
Speex codec in VAD mode, it is not clear whether it really makes any difference
from a semantical point of view if a speaker has spoken 5075 ms or 5089.5 ms, which
corresponds to 350 and 351 audio packets respectively, or whether both segments
have the same semantics.

To address this issue, we explored how clustering of packet durations changes the
classification results. This method has additionally the advantage that it reduces the
complexity of the used models. We regard sequences of n audio packets to fall into
the same cluster, e.g. for cluster size of n = 5, the first cluster consists of segments
of length 1 to 5 packets, the second one of segments of length 6 to 10 packets, etc.
In our experiments, we adjusted the cluster size in order to find a granularity size
of the segment durations which gives the best classification performance.

Excluding short segments

In the English language, syllables were observed to have a mean duration of 190 ms
[16], and pauses of less than 200 ms account for only 3.9% of the observed pauses [10].
Thus, short segments (less than 200 ms long) might carry little valuable information
for our purposes. However, in the course of our experiments, we observed that in
speech encoded by the Speex codec in VAD mode, there is a high number of short
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voice and pause segments. The percentage of one-audio-packet-long segments (14.5
ms long) reached 65% for pauses and 40% for voice. As short segments may just be
an artifact of the particular codec used, their use in our analysis may have a negative
effect on the classifiers’ performance. To examine the impact of short segments to our
classification task, we considered excluding them from our experiments. We varied
the length of the excluded segments to determine when the classifiers perform best.

4.2 Classifiers

This section introduces the classifiers we consider in our work. Those classifiers are
goodness of fit tests, comparing how well the probability distribution over segment
durations of the unknown speaker fits into distributions over durations collected
in the training phase. Before describing the particular tests, we introduce some
notation.

Assume we are given a set of speakers S with |S| = N and a set of possible
segment durations L with |L| = n. In the training phase, from the training data
of each speaker s ∈ S, the attacker computes the trained probability distribution
P s

t over segment durations in L. In the attack phase, from the collected data of
the unknown speaker, the attacker computes the observed probability distribution
Po segment durations in L. Using the goodness of fit function f , the attacker
computes the goodness of fit f(Po, P

s
t ) of the observed distribution Po in all trained

distributions P s
t for speakers s ∈ S. The speaker s∗ = arg min

s∈S
f(Po, P

s
t ) is considered

by the classifier to be the most likely speaker.

4.2.1 L1 distance

The L1 distance, also known as L1 norm, taxicab geometry and Manhattan distance,
is a classical measure for distance between two vectors. We use it to determine
the distance between the observed and the trained probability, treating probability
distributions as vectors. We used the L1 distance because of its simplicity – it
compares two distributions by summing the differences between the distributions at
each point.

For two distributions Po and Pt, the L1 distance is computed as:

L1(Po, Pt) =
n∑

i=1

|Po(li)− Pt(li)|

4.2.2 χ2 test

The χ2 test [29] is a widely used goodness of fit test. In contrast to the L1 distance,
the χ2 test gives more weight to points which have a lower trained probability. For
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two distributions Po and Pt, the χ2 test is computed as:

χ2(Po, Pt) =
n∑

i=1

(Po(li)− Pt(li))
2

Pt(li)

4.2.3 Kolmogorov-Smirnov test

A further test we consider is the Kolmogorov-Smirnov test (or K-S test) [23]. It is
known to perform good in some situations when the performance of the χ2 test is
limited, such as when the sample size is small or is scattered throughout a relatively
large number of discrete categories [28]. For two distributions Po and Pt, the K-S
test is computed as:

K-S(Po, Pt) = max
k≤n
{|

k∑
i=1

(Po(li)− Pt(li))|}

The K-S test searches for the maximum difference between two cumulative distri-
butions. However when regarding the cumulative distribution function, segments of
smaller length have a higher weight in the resulting evaluation than longer segments.
As we don’t have a reason to believe that short segments are more important than
long ones (see the discussion in Section 4.1.2), we slightly modified the K-S test so
that it searches for the longest sequence of consecutive segment durations. We call
this test K-S-modified and it is defined as follows:

K-S-mod(Po, Pt) = max
j≤k≤n

{|
k∑

i=j

(Po(li)− Pt(li))|}

4.2.4 Support distance

In order to obtain a better understanding about what distinguishes the analyzed
distributions, we developed a further goodness of fit test1, which we call support
distance. Let the support of a probability distribution P be defined as:

supp(P ) = {x|P (x) > 0}

For two probability distributions Po and Pt, we compute the support distance as
the percentage of points where only one of the probabilities is positive, or formally:

supp dist(Po, Pt) =
1

n
(|supp(Po) \ supp(Pt)|+ |supp(Pt) \ supp(Po)|)

1This test was inspired by a bug we had in one of our classifiers.
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4.3 Classifier evaluation

In the attack phase, the classifiers described above take as input a particular obser-
vation and calculate how well the observed model fits into different trained models.
If we have N trained speakers and we input observed data from an unknown speaker,
we obtain a vector of scores 〈s1, s2, . . . , sN〉, si corresponding to the score of the un-
known speaker’s model when compared to the model of speaker i. From this vector
we have to infer which model describes best the observation and make a guess about
the identity of the speaker. After performing t experiments, we obtain t such vectors
of scores. In the following we present several techniques to evaluate the performance
of the classifiers after several performed experiments.

4.3.1 Recognition rate

The first evaluation technique we consider is recognition rate (RR). After each ex-
periment the classifier makes a guess about the identity of the unknown speaker.
We take as a guess the speaker with the optimal score from the vector of scores,
which in the above described classifiers is the minimal score. A guess is considered
correct if it is unique and is equal to the true identity of the unknown speaker.
After performing t experiments, we count how many correct guesses the classifier
has performed, and the recognition rate is obtained as follows:

RR :=
# correct guesses

t

The recognition rate is an intuitive measure for the accuracy of classifiers. How-
ever, it is a quite conservative measure, as it ignores all results where the speakers
are classified close to correctly. For example, if the correct result is always classified
with the second score from 15 speakers, we would obtain a recognition rate of 0.
Nevertheless, we would still be content with this result because it would mean that
the classifier performs far better than random guessing, which would give on average
the 8th score. Therefore, we are not only interested in the best-scored speaker, but
in a subset of the highest-ranked speakers. In the following sections we describe two
classifier evaluation techniques that address this issue.

4.3.2 Average rank

A possible scoring method is computing the average rank (AR) over the all obtained
ranks. This is a well-known method for classifier evaluation (e.g., see [8]). Let N
be the number of speakers and t the number of trials. After performing a trial,
from the set of scores 〈s1, s2, . . . , sN〉 we compute the rank as the position at which
the correct speaker was ranked. In case of a score tie, we take the lowest ranking
position among all speakers with the same score. Thus, after t trials, we obtain the
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ranks r1, r2, . . . , rt, where ri rank in the i-th trial. We compute the average rank as
follows:

AR :=
t∑

i=1

ri

t

Reading the results of this measure is very intuitive as it shows which position
is output by the classifier on average, results closer to position 1 being preferred.
However, as we are only interested in the highest several ranks, the use of average
ranks may result in misleading conclusions. For example, assume a classifier that
for N = 10 speakers and t = 2 trials outputs once rank 3 and once rank 9, thus the
average rank here is 6. Here we would prefer another classifier, which outputs once
rank 2 and once rank 10, but nevertheless in both cases we obtain the same average
rank of 6.

To address those shortcomings of average ranks, we consider giving more weight
to ranks closer to position one. A technique which does this is called discounted
cumulative gain and is discussed in the following section.

4.3.3 Discounted cumulative gain

Discounted cumulative gain (DCG) is a scoring technique used mainly in information
retrieval for rating web search engine algorithms [22]. We adapt this measure to our
purposes and define it in the following.

Let for i ∈ {1, . . . , N}, the relevance reli be defined as number of trials where the
correct speaker was ranked i-th. The DCG-measure is defined as:

DCG :=
N∑

i=1

reli
d(i)

,

where d(i) is called discounting function. In information retrieval literature, f(i) =
log2(i + 1) is usually applied. Using this measure, top-ranked speakers will have a
higher weight than lower-ranked ones, but lower ranks will still have a relevance
to the final score of a classifier. The smoothness of the discounts can be adjusted
by selecting a different base of the logarithm or by selecting a different discounting
function, such as a linear (e.g. d(i) = i), a polynomial (e.g. d(i) = i2), or an
exponential one (e.g. d(i) = 2i).



5 Empirical Evaluation

We conducted a series of experiments to evaluate how well the classifiers described
in Chapter 4 perform if we execute an attack against the anonymity in VoIP. In the
assumed attack setting, the traffic observed by the attacker contains communication
between the victim and N speakers. We simulated VoIP conversations by encoding
speeches of 13 speakers using a popular speech codec and we analyzed the durations
of what was classified by the codec as voice and pause segments. In the following
we describe the conducted experiments and their results.

5.1 Experimental setup

As target speakers, we chose 13 politicians (see Table 5.1): 11 American presidents,
one Russian president, and one German chancellor. They were aged between 43 and
77 at the time of recording, 12 of them are male, 11 are English native speakers.
This set of voice recordings is homogeneous with respect to the setting in which the
speeches were given, as they are official addresses to the nation that were broadcast
on radio or television. The collected speeches are available online on [19], [3], [4]
and [31]. The length of the collected audio data per speaker varied between 47 and
114 minutes.

We encoded the data using the Speex codec [48], version 1.2rc1. This is an
open source speech codec, supported by popular VoIP applications, such as Google
Talk [20], TeamSpeak [15], Ekiga [1] and Microsoft Netmeeting [12]. We used the
Voice Activity Detection (VAD) mode offered by Speex.

5.2 Results

We tested the performance of the analysis techniques presented in Chapter 4 on the
above-described data set. As features, we used voice, pause and (voice,pause,voice)-
triplets (cf. Section 4.1.1). For each tested speaker, the speech data was divided
into two parts, a training set and an attack set, which were used respectively for
training the classifiers and for performing the actual attack. We additionally tested
the robustness of the analysis techniques by applying them on noisy data and on
data sets recorded several years apart.

21
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Speaker Language Number
speeches

Duration
(mm:ss)

Speaker’s
age

Angela Merkel German 15 53:53 54
Barrack Obama English 15 68:33 47
Dimitry Medvedev Russian 12 66:40 43
Dwight D. Eisenhower English 7 67:28 62-70
Franklin D. Roosevelt English 4 80:38 54-57
George W. Bush English 15 50:24 61
Harry S. Truman English 5 60:48 51-55
Jimmy Carter English 6 47:56 52-55
John F. Kennedy English 8 47:10 44-46
Lyndon B. Johnson English 8 50:25 55-59
Richard Nixon English 6 113:43 56-58
Ronald Reagan English 12 51:06 70-77
William J. Clinton English 20 82:05 53-54

Table 5.1: Data used in the experiments

5.2.1 Performance of the classifiers

We performed the experiments applying the techniques presented in Chapter 4.2,
using half of a speaker’s data as the training set and the other half as the attack
set, and then we repeated the experiments using the second half for training and the
first for the attack. Thus, for the 13 tested speakers, a total of 26 experiments were
conducted. To evaluate the performance of the classifiers after conducting those
experiments, we analyzed the classifiers’ recognition rate (RR), i.e., percentage of
correctly guessed speakers, average rank (AR), and discontinuous gain (DCG) (cf.
Section 4.3). In the following we will only discuss the first two, as the computed
values are more intuitively understandable.

Table 5.2, 5.3 and 5.4 show the best results of the performed experiments, using
voice, pause and (voice,pause,voice)-triplets as features. They show a comparison
between raw results, i.e. when the experiments were conducted directly on the
collected data, and optimized results, i.e. after applying some of the optimization
techniques discussed in Section 4.1.2. A comprehensive list of results is presented in
Appendix A.

Raw results When no optimization techniques were applied, the best obtained re-
sults for each feature were a recognition rate of 34.6% using χ2 on pauses (Table
5.2), 46.2% using support distance on voice (Table 5.3), and 38.5% using χ2 on
(voice,pause,voice)-triplets (Table 5.4). It is notable that almost always the classi-
fiers performed better than random guessing, which gives an expected recognition
rate of 7.7%.
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Raw results Optimized results
Classifier RR AR DCG Variant RR AR DCG
L1 0.269 4.000 0.581 2 0.346 4.269 0.601
χ2 0.346 3.577 0.631 0 0.346 3.577 0.631
K-S 0.192 4.115 0.542 2 0.231 4.500 0.545
K-S-mod 0.269 4.192 0.579 2 0.346 3.962 0.611
supp dist 0.269 3.885 0.514 5 0.385 4.346 0.566
Random 0.077 7 0.412 0.077 7 0.412
Best case 1 1 1 1 1 1

Table 5.2: Best results of the experiments when using pause segments. The vari-
ant is the longest omitted segment duration when optimization is ap-
plied, in number of packets. (RR = recognition rate, AR = average rank,
DCG = discontinuous gain)

Raw results Optimized results
Classifier RR AR DCG Variant RR AR DCG
L1 0.308 3.231 0.580 2 0.346 3.385 0.587
χ2 0.269 3.962 0.539 2 0.308 3.692 0.561
K-S 0.154 3.962 0.474 11 0.462 2.692 0.661
K-S-mod 0.115 4.500 0.443 11 0.385 2.923 0.612
supp dist 0.462 4.538 0.667 5, 7-11 0.462 4.538 0.668
Random 0.077 7 0.412 0.077 7 0.412
Best case 1 1 1 1 1 1

Table 5.3: Best results of the experiments when using voice segments. The vari-
ant is the longest omitted segment duration when optimization is ap-
plied, in number of packets. (RR = recognition rate, AR = average rank,
DCG = discontinuous gain)

Raw results Optimized results
Classifier RR AR DCG Variant RR AR DCG
L1 0.269 4.577 0.539 100 0.423 3.192 0.694
χ2 0.385 2.808 0.638 10 0.692 2.577 0.818
K-S 0.269 2.962 0.587 200 0.308 3.346 0.631
K-S-mod 0.077 3.923 0.488 100 0.462 3.654 0.683
supp dist 0.308 5.346 0.564 100 0.423 3.077 0.694
Random 0.077 7 0.412 0.077 7 0.412
Best case 1 1 1 1 1 1

Table 5.4: Best results of the experiments when using (voice,pause,voice)-triplets.
The variant is the number of packets per cluster when optimization is
applied. (RR = recognition rate, AR = average rank, DCG = discontin-
uous gain)
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Classifier RR AR DCG
supp dist 0.731 2.577 0.841
Random 0.077 7.000 0.412
Best case 1 1 1

Table 5.5: Results when using support distance on voice data, with clusters of 8
packets (RR = recognition rate, AR = average rank, DCG = discontin-
uous gain)

Optimized results Using only pause and only voice segments as features, we re-
peated the experiments omitting short segments of voice and pauses. After tuning
the amount of omitted segment durations, we obtained an improved recognition ca-
pability of the used classifiers. For pauses, the best recognition rate of 38.5% was
obtained using support distance when omitting segments of less than or equal to 5
packets (Table 5.2); the remaining classifiers also improved their performance. For
voice, a recognition rate of 46.2% was achieved using the K-S test when omitting
segments of less than or equal to 11 packets (Table 5.3), and the remaining classifiers
also showed an improved performance.

Using (voice,pause,voice)-triplets, we applied clustering of the data. After tuning
the number of the audio packets contained in a cluster, an improvement was observed
in all used classifiers, and the best result of 69.2% was obtained using the χ2 classifier,
with 10 packets per cluster (Table 5.4).

In the course of the experiments, we tried out several different combinations of
the above-mentioned techniques. The best result of 73.1% recognition rate was
obtained using support distance on voice data, with 8 packets per cluster (see Table
5.5). It is interesting to note that this classifier was robust against missing short
segments, having similar performance when the first 1 to 20 packet-long segments
were omitted. This can be explained by the fact that short segments were very
common in our Speex-encoded data, and common durations do not have much
weight in the computation of the support distance.

5.2.2 Robustness to noise

In a real-life scenario, the use of various devices and differences in connection quality
may cause differences in the audio quality of the conversations. We tested how audio
quality would affect the recognition of a speaker by adding pink noise to Angela
Merkel’s speeches. Unlike other types of noise, such as white noise or some other
background sound, the energy of pink noise is logarithmically distributed across
the human hearing and it is known to be hard to be removed by noise-removal
algorithms [46]. The resulting recordings had perceivably worse audio quality than
the originals, although the speech was still recognizable by humans. We divided
Angela Merkel’s data into two equal parts and added noise to each of the parts. One
part containing noisy data was used for training and one part containing the original
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data (or normal data) was used for the attack and vice versa, resulting in a total
of four experiments. We used χ2 on voice, pauses and (voice,pause,voice)-triplets,
as this classifier showed the most stable performance in the previous experiments,
as well as support distance on voice, as this classifier achieved the best recognition
rate. Table 5.6 shows a comparison of the performance of those classifiers when
only normal data was used and when noise was added to Angela Merkel’s speech
(mixed data). On voice and (voice,pause,voice)-triplets, χ2 showed a worsening in
its performance, but nevertheless a recognition rate of 25% for voice and 50% for
(voice,pause,voice)-triplets was obtained. On pauses, χ2 performed very poorly on
noisy speech. The support distance classifier showed a relatively good performance
with a recognition rate of 50%. However, it did not show a stable performance
because half of the samples were rated extremely low, and therefore it had an average
rank of 7, which is equal to the expected average rank in random guessing.

Normal data Mixed data
Analysis techniques used RR AR DCG RR AR DCG
χ2 on pauses, no omitted seg-
ments

0.5 1.5 0.815 0 8.5 0.298

χ2 on voice, longest omitted seg-
ment duration 2

1 1 1 0.25 3 0.612

χ2 on (voice,pause,voice), clus-
ter size 10

1 1 1 0.500 3.250 0.659

support on voice, cluster size 8 1 1 1 0.5 7 0.631
Random 0.077 7 0.412 0.077 7 0.412
Best case 1 1 1 1 1 1

Table 5.6: Results when testing noisy vs. normal data of Angela Merkel
(RR = recognition rate, AR = average rank, DCG = discontinuous gain)

5.2.3 Age-related changes

As discussed in Section 2.3.1, changes in the way of speaking occur as people get
older. It is interesting to investigate whether the classifiers’ performance will de-
teriorate if the data used for training and for the attack is recorded several years
apart. We tested this on Bill Clinton’s speeches from his first and his second term,
which were recorded 7 years apart. For this, we additionally collected 168 minutes of
recordings from the time when Clinton was 47 years old. With the best-performing
classifiers from the previous experiments, two experiments were performed: using
recordings from 1993-1994 for training and recordings from 2000-2001 for the attack
and vice versa. Table 5.7 shows a comparison of the classifiers’ performance when
both the older and the newer datasets (mixed data) were used and when only the
newer recordings were used (normal data). The χ2 classifier performed similarly on
mixed data as on normal data and we observed a worsening only in the results for
(voice,pause,voice)-triplets, where the recognition rate sank from 0.5 to 0 and the
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average rank sank from 1.5 to 3. Support distance showed a drastic worsening in its
performance, showing no recognition ability whatsoever.

Normal data Mixed data
Analysis techniques used RR AR DCG RR AR DCG
χ2 on pauses, no omitted seg-
ments

0 2.5 0.565 0 2 0.630

χ2 on voice, longest omitted seg-
ment duration 2

1 1 1 1 1 1

χ2 on (voice,pause,voice), clus-
ter size 10

0.5 1.5 0.815 0 3 0.5

support on voice, cluster size 8 1 1 1 0 11.5 0.275
Random 0.077 7 0.412 0.077 7 0.412
Best case 1 1 1 1 1 1

Table 5.7: Results when testing older vs. newer recordings of Bill Clinton
(RR = recognition rate, AR = average rank, DCG = discontinuous gain)

It is important to note that the audio quality of the older and the newer recordings
was different, probably due to the use of different recording equipment. Thus, the
decrease in discrimination ability may be due to differences in audio quality only,
and not due to Clinton’s age. Furthermore, 7 years may be not a long enough
time-span, so that age-related changes in speech occur.

5.2.4 Discussion of results

The experiments we conducted show that using L1, χ
2 and the two variants of the

K-S test, we obtained a recognition rate of 23.1% to 38.5% using pauses, 30.8% to
46.2% using voice and 30.8% to 69.2% using (voice,pause,voice)-triplets. All these
results are a clear improvement over random guessing where the expected recognition
rate is 7.7%. χ2 shows the most robust performance, delivering reasonable results
even when noise is applied. The best result using this classifier was a recognition
rate of 69.2%, which was obtained using (voice,pause,voice)-triplets.

The best results we obtained was a recognition rate of 73.1% using the support
distance classifier on voice. It is interesting to analyze the performance of this
classifier, which in some cases delivered good results and in other showed a much
worse performance than that of the other classifiers, as for example in the tests
of older versus newer speeches of Bill Clinton (Section 5.2.3). A deeper look at
its construction shows that it distinguishes well between two speakers if there are
many segment durations which one of the speakers does not use at all and the
other one uses at least once. It is naive to infer that there are some durations that
are specific only to a particular speaker and that even given an unlimited number
of other people’s speeches, those particular durations will never be found in their
speech. We conjecture that given enough speech data from all speakers, at some
point all possible segment durations will be used at least once by each speaker, and
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thus the support distance will be constantly 0. Thus, we do not recommend the
broad usage of this classifier. However, the good performance of support distance in
some cases indicates that some segment durations are more important than others.
This finding may be used when constructing classifiers which give more weight to
particular durations and ignore other durations.





6 Conclusion

In the current work we show that in areas where voice activity detection (VAD)
techniques are applied, such as mobile telephony and VoIP, even though encryption
is commonly applied, the anonymity of users is compromised. We present methods
for analysis of VAD-encoded telephone traffic which take the durations of what
the VAD algorithm has classified as voice and pauses and output a guess about
the identity of the speaker. At first sight, being able to distinguish whether one
is speaking or not during a conversation looks like a minor information leakage.
However, in the experiments we executed, using speeches of 13 speakers, two of the
presented classifiers achieved a recognition rate of 69.2% and 73.1% respectively.
Those results imply that this information leakage is sufficient to make a good guess
about the identity of the participating speakers. This finding makes us believe that
the use of VAD technologies in digital telephony presents serious threat for the
anonymity of its users.

Future work

The aim of this work is to show the presence and severity of a particular security
threat by presenting tools that can be used for attacks on the anonymity in encrypted
telephone conversations. We believe that the performance of the proposed classifiers
can be improved by combining some of the proposed techniques or by incorporating
new techniques in the data analysis.

Our experiments were not conducted on real telephone conversations, but we used
an artificial experimental environment instead. More experiments are needed to
evaluate the performance of the proposed methods in a practical scenario by placing
an attack against an actual mobile network or a VoIP application. Furthermore,
the test data we used contains monologues which have different dynamics than
conversations between two speakers. Thus, tests on actual conversations will shed
more light on the severity of those security threats.
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Appendix A

Comprehensive List of Results

This appendix presents a full list of the results of the experiments described in
Section 5.2.1.

Using pauses segments

RR = recognition rate, AR = average rank, DCG = discontinuous gain;
the variant is the longest omitted segment duration

L1 classifier
Variant RR AR DCG

0 0.269 4.000 0.581
1 0.308 4.423 0.588
2 0.346 4.269 0.601
3 0.269 4.231 0.576
4 0.269 4.385 0.562
5 0.269 4.500 0.560
6 0.231 4.615 0.547
7 0.269 4.769 0.552
8 0.308 4.769 0.565
9 0.269 4.885 0.546
10 0.269 5.000 0.541
11 0.269 5.000 0.541
12 0.231 5.000 0.526
13 0.231 4.962 0.529
14 0.231 4.962 0.529
15 0.231 4.962 0.529
16 0.231 4.962 0.529
17 0.231 4.962 0.529
18 0.231 4.962 0.529
19 0.231 4.962 0.529
20 0.231 4.962 0.529

Random 0.077 7 0.412
Best case 1 1 1

χ2 classifier
Variant RR AR DCG

0 0.346 3.577 0.631
1 0.308 3.808 0.613
2 0.308 3.692 0.619
3 0.308 3.615 0.621
4 0.269 3.769 0.601
5 0.269 3.769 0.598
6 0.231 4.308 0.577
7 0.308 4.500 0.593
8 0.269 4.808 0.563
9 0.346 4.808 0.588
10 0.269 5.346 0.540
11 0.192 5.500 0.509
12 0.192 5.462 0.505
13 0.192 5.615 0.493
14 0.231 5.500 0.512
15 0.231 5.538 0.510
16 0.269 5.462 0.529
17 0.269 5.346 0.533
18 0.269 5.269 0.537
19 0.269 5.269 0.537
20 0.269 5.231 0.540

Random 0.077 7 0.412
Best case 1 1 1
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RR = recognition rate, AR = average rank, DCG = discontinuous gain;
the variant is the longest omitted segment duration

K-S classifier
Variant RR AR DCG

0 0.192 4.115 0.542
1 0.192 4.885 0.513
2 0.231 4.500 0.545
3 0.192 4.731 0.518
4 0.192 4.846 0.520
5 0.231 4.846 0.532
6 0.231 4.769 0.540
7 0.192 4.923 0.517
8 0.231 5.000 0.531
9 0.192 5.269 0.508
10 0.154 5.269 0.494
11 0.192 5.269 0.506
12 0.192 5.192 0.509
13 0.192 5.154 0.509
14 0.192 5.077 0.510
15 0.231 5.000 0.527
16 0.231 5.000 0.527
17 0.231 5.000 0.527
18 0.231 5.000 0.527
19 0.231 5.000 0.527
20 0.231 5.000 0.527

Random 0.077 7 0.412
Best case 1 1 1

K-S-mod classifier
Variant RR AR DCG

0 0.269 4.192 0.579
1 0.269 4.154 0.584
2 0.346 3.962 0.611
3 0.269 4.462 0.562
4 0.269 4.692 0.558
5 0.231 4.885 0.532
6 0.269 4.769 0.552
7 0.269 4.808 0.550
8 0.269 4.846 0.549
9 0.231 4.962 0.529
10 0.231 4.962 0.529
11 0.231 5.000 0.527
12 0.231 5.000 0.527
13 0.231 5.000 0.527
14 0.231 5.000 0.527
15 0.231 5.000 0.527
16 0.231 5.000 0.527
17 0.231 5.000 0.527
18 0.231 5.000 0.527
19 0.231 5.000 0.527
20 0.231 5.000 0.527

Random 0.077 7 0.412
Best case 1 1 1
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RR = recognition rate, AR = average rank, DCG = discontinuous gain;
the variant is the longest omitted segment duration

supp dist classifier
Variant RR AR DCG

0 0.269 3.885 0.582
1 0.308 4.346 0.590
2 0.308 4.423 0.581
3 0.346 4.308 0.603
4 0.385 4.308 0.616
5 0.385 4.346 0.615
6 0.308 4.308 0.592
7 0.308 4.231 0.593
8 0.308 4.385 0.586
9 0.192 4.615 0.543
10 0.231 4.615 0.552
11 0.269 4.577 0.568
12 0.192 4.577 0.544
13 0.231 4.615 0.555
14 0.231 4.577 0.553
15 0.192 4.731 0.535
16 0.269 4.769 0.561
17 0.269 4.731 0.568
18 0.231 4.846 0.542
19 0.154 4.885 0.518
20 0.154 4.769 0.521

Random 0.077 7 0.412
Best case 1 1 1

supp dist classifier, cluster size 8
Variant RR AR DCG

0 0.692 2.538 0.811
1 0.692 2.500 0.815
2 0.692 2.615 0.812
3 0.692 2.654 0.809
4 0.692 2.692 0.807
5 0.654 2.885 0.791
6 0.654 3.077 0.787
7 0.654 3.269 0.785
8 0.654 3.423 0.778
9 0.615 3.269 0.766
10 0.500 3.346 0.717
11 0.423 3.538 0.681
12 0.346 3.615 0.642
13 0.462 2.808 0.735
14 0.346 3.423 0.657
15 0.346 3.385 0.675
16 0.385 3.577 0.682
17 0.385 3.462 0.690
18 0.385 3.115 0.703
19 0.385 3.423 0.690
20 0.346 3.731 0.663

Random 0.077 7 0.412
Best case 1 1 1
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Using voice segments

RR = recognition rate, AR = average rank, DCG = discontinuous gain;
the variant is the longest omitted segment duration

L1 classifier
Variant RR AR DCG

0 0.308 3.231 0.653
1 0.269 3.192 0.638
2 0.346 3.385 0.652
3 0.308 3.385 0.643
4 0.308 3.385 0.643
5 0.308 3.500 0.633
6 0.308 3.500 0.634
7 0.308 3.500 0.635
8 0.192 3.538 0.602
9 0.231 3.577 0.608
10 0.269 3.654 0.615
11 0.269 3.731 0.609
12 0.269 3.923 0.594
13 0.231 3.769 0.581
14 0.231 3.846 0.578
15 0.192 3.846 0.566
16 0.192 3.731 0.577
17 0.192 3.808 0.569
18 0.154 3.808 0.556
19 0.115 3.654 0.550
20 0.115 3.769 0.548

Random 0.077 7 0.412
Best case 1 1 1

χ2 classifier
Variant RR AR DCG

0 0.269 3.962 0.610
1 0.269 3.500 0.624
2 0.308 3.692 0.630
3 0.308 3.731 0.628
4 0.308 3.769 0.623
5 0.231 3.923 0.586
6 0.269 3.846 0.602
7 0.269 3.846 0.604
8 0.231 3.846 0.591
9 0.231 3.962 0.587
10 0.231 4.000 0.585
11 0.231 4.154 0.580
12 0.192 4.269 0.563
13 0.192 4.192 0.568
14 0.192 4.231 0.567
15 0.192 4.192 0.564
16 0.192 4.231 0.562
17 0.192 4.077 0.565
18 0.192 4.000 0.566
19 0.192 3.885 0.574
20 0.192 3.962 0.565

Random 0.077 7 0.412
Best case 1 1 1
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RR = recognition rate, AR = average rank, DCG = discontinuous gain;
the variant is the longest omitted segment duration

K-S classifier
Variant RR AR DCG

0 0.154 3.962 0.561
1 0.308 3.423 0.638
2 0.346 3.269 0.655
3 0.462 3.231 0.694
4 0.423 3.077 0.689
5 0.423 3.192 0.684
6 0.346 3.231 0.650
7 0.385 2.846 0.680
8 0.423 2.654 0.703
9 0.423 2.808 0.698
10 0.462 2.731 0.713
11 0.462 2.692 0.716
12 0.346 2.885 0.665
13 0.308 3.077 0.643
14 0.269 3.192 0.618
15 0.269 3.038 0.632
16 0.269 3.115 0.629
17 0.308 3.000 0.645
18 0.385 2.808 0.680
19 0.385 2.769 0.690
20 0.385 2.923 0.678

Random 0.077 7 0.412
Best case 1 1 1

K-S-mod classifier
Variant RR AR DCG

0 0.115 4.500 0.532
1 0.192 4.308 0.569
2 0.231 4.115 0.605
3 0.231 4.192 0.601
4 0.269 4.000 0.604
5 0.269 4.115 0.602
6 0.231 3.769 0.595
7 0.346 3.192 0.668
8 0.308 2.962 0.650
9 0.308 2.962 0.648
10 0.385 2.962 0.669
11 0.385 2.923 0.675
12 0.308 3.077 0.640
13 0.308 3.192 0.628
14 0.231 3.346 0.596
15 0.231 3.115 0.610
16 0.231 3.154 0.609
17 0.231 3.154 0.605
18 0.231 2.962 0.621
19 0.231 3.000 0.624
20 0.346 3.000 0.665

Random 0.077 7 0.412
Best case 1 1 1
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RR = recognition rate, AR = average rank, DCG = discontinuous gain;
the variant is the longest omitted segment duration

supp dist classifier
Variant RR AR DCG

0 0.462 4.538 0.667
1 0.462 4.538 0.667
2 0.462 4.577 0.667
3 0.462 4.615 0.666
4 0.462 4.577 0.667
5 0.462 4.538 0.668
6 0.462 4.577 0.668
7 0.462 4.538 0.668
8 0.462 4.538 0.668
9 0.462 4.538 0.668
10 0.462 4.538 0.668
11 0.462 4.538 0.668
12 0.423 4.538 0.655
13 0.423 4.538 0.655
14 0.423 4.538 0.655
15 0.423 4.500 0.655
16 0.423 4.538 0.655
17 0.423 4.500 0.655
18 0.462 4.500 0.668
19 0.423 4.577 0.654
20 0.423 4.615 0.653

Random 0.077 7 0.412
Best case 1 1 1

supp dist classifier, cluster size 8
Variant RR AR DCG

0 0.731 2.577 0.841
1 0.731 2.577 0.841
2 0.692 2.654 0.826
3 0.692 2.654 0.826
4 0.692 2.615 0.826
5 0.692 2.654 0.826
6 0.692 2.615 0.826
7 0.692 2.615 0.826
8 0.731 2.654 0.839
9 0.731 2.654 0.839
10 0.731 2.654 0.839
11 0.731 2.654 0.839
12 0.731 2.654 0.839
13 0.692 2.731 0.825
14 0.692 2.731 0.825
15 0.692 2.731 0.825
16 0.692 2.731 0.825
17 0.692 2.731 0.825
18 0.692 2.731 0.821
19 0.692 2.769 0.821
20 0.692 2.769 0.821

Random 0.077 7 0.412
Best case 1 1 1
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Using (voice,pause,voice)-triplets

RR = recognition rate, AR = average rank, DCG = discontinuous gain;
the variant is the number of packets per cluster

L1 classifier
Variant RR AR DCG

1 0.269 5.577 0.539
5 0.346 4.846 0.594
10 0.269 4.462 0.570
20 0.154 4.192 0.535
40 0.308 3.654 0.628
80 0.423 3.385 0.680
100 0.423 3.192 0.694
200 0.308 3.346 0.644
400 0.385 3.692 0.646
800 0.231 4.962 0.557
1000 0.154 6.346 0.462
1200 0.192 5.846 0.510

Random 0.077 7 0.412
Best case 1 1 1

χ2 classifier
Variant RR AR DCG

1 0.385 3.808 0.638
5 0.577 2.615 0.776
10 0.692 2.577 0.818
20 0.462 2.462 0.737
40 0.462 3.000 0.698
80 0.423 3.000 0.690
100 0.385 3.115 0.682
200 0.231 3.500 0.598
400 0.385 3.538 0.654
800 0.269 4.808 0.556
1000 0.192 5.846 0.502
1200 0.115 6.346 0.465

Random 0.077 7 0.412
Best case 1 1 1

K-S classifier
Variant RR AR DCG

1 0.269 3.962 0.587
5 0.154 4.846 0.521
10 0.269 4.346 0.579
20 0.154 5.538 0.486
40 0.308 4.192 0.586
80 0.462 3.808 0.688
100 0.308 3.615 0.620
200 0.308 3.346 0.631
400 0.231 3.577 0.590
800 0.231 5.308 0.528
1000 0.077 5.808 0.440
1200 0.115 5.192 0.497

Random 0.077 7 0.412
Best case 1 1 1

K-S-mod classifier
Variant RR AR DCG

1 0.077 4.923 0.488
5 0.154 5.692 0.483
10 0.154 5.077 0.491
20 0.154 5.077 0.500
40 0.269 4.231 0.583
80 0.346 3.654 0.640
100 0.462 3.654 0.683
200 0.308 3.423 0.635
400 0.231 3.885 0.587
800 0.154 5.423 0.512
1000 0.077 6.154 0.431
1200 0.192 4.923 0.536

Random 0.077 7 0.412
Best case 1 1 1
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RR = recognition rate, AR = average rank, DCG = discontinuous gain;
the variant is the number of packets per cluster

supp dist classifier
Variant RR AR DCG

1 0.308 5.346 0.564
5 0.346 4.692 0.596
10 0.269 4.423 0.570
20 0.154 4.154 0.535
40 0.308 3.538 0.630
80 0.423 3.385 0.680
100 0.423 3.077 0.694
200 0.308 3.346 0.644
400 0.385 3.615 0.647
800 0.231 4.923 0.558
1000 0.154 6.346 0.462
1200 0.192 5.769 0.511

Random 0.077 7 0.412
Best case 1 1 1


