
UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INFORMÁTICOS

Tools for the Evaluation and Choice of
Countermeasures against Side-Channel Attacks

PHD THESIS

Goran Doychev

DEPARTAMENTAMENTO DE LENGUAJES Y SISTEMAS INFORMÁTICOS E
INGENIERIA DE SOFTWARE

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INFORMÁTICOS

UNIVERSIDAD POLITÉCNICA DE MADRID

Tools for the Evaluation and Choice of
Countermeasures against Side-Channel Attacks
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF:

Doctor of Philosophy in Computer Science

Author: Goran Doychev
M.Sc. in Computer Science, Saarland University

Advisor:

Prof. Dr. Boris Köpf IMDEA Software Institute

Thesis Committee:
Prof. Dr. Somesh Jha (Chair) University of Wisconsin
Prof. Dr. Manuel Carro Liñares (Secretary) Universidad Politécnica de Madrid
Prof. Dr. Juan Caballero IMDEA Software Institute
Dr. François Dupressoir IMDEA Software Institute
Prof. Dr. Jens Grossklags The Pennsylvania State University

2016

ii

Abstract
Side-channel attacks have been successful in breaking cryptographic protections of
systems, by using secret-dependent variations of non-functional properties such as
timing or traffic volume. Countermeasures against side-channel attacks usually attempt
to eliminate or reduce these variations, which may lead to performance penalties such
as increases in the running time of programs, or in the traffic volume they induce. This
thesis investigates the trade-off between the security of side-channel countermeasures,
and their cost in terms of performance penalties. For this, we seek rigorous answers to
two research questions:

Q1: How to choose a balance between the security guarantees and the performance
penalties of side-channel countermeasures?
Q2: How to measure the security of side-channel countermeasures on practical
systems?

This thesis develops tools that enable the security quantification and the choice
of practical countermeasures against side-channel attacks. These tools include the
necessary formal models, as well as algorithms and software tools to allow the automatic
evaluation of practical systems.

In addressing Q1, we develop the first systematic approach for choosing side-channel
countermeasures. We do this in a game-theoretic model, where a defender chooses a
protection against an adversary who performs an attack. We apply this approach for
reasoning about countermeasures against timing attacks, i.e., attacks where an adversary
can exploit secret-dependent execution time of programs. We identify cases where
leaky countermeasures are preferable to leak-free, constant-time implementations, as
they offer better performance without sacrificing security.

In addressing Q2, we develop the first tools for the automatic formal quantification
of the security of side-channel countermeasures in practical systems. We do this for two
types of attacks: cache attacks, where an adversary exploits secret-dependent timing
differences due to the use of the CPU cache, and web-traffic attacks, where an adversary
exploits secret-dependent differences in the volume of encrypted traffic.

To capture cache attacks, we develop the tool CacheAudit, which performs static
analysis of x86 binaries, and quantifies their security with respect to cache adversaries.
Using CacheAudit, we analyze implementations of AES from the PolarSSL library,
as well as of the finalists of the eSTREAM stream cipher competition, and we reason
about the effects of architectural features such as cache size and replacement policy to
side-channel leakage. Furthermore, we devise novel techniques that provide support for
bit-level and symbolic reasoning about pointers in the presence of dynamic memory
allocation, which we apply for reasoning about the effectiveness of several widely
deployed side-channel countermeasures from the libgcrypt and OpenSSL libraries.

To capture web-traffic attacks, we develop scalable algorithms that enable the formal
quantification of web-traffic leakage, as well as the generating of provable protections.
We apply these algorithms on practical instances of web applications.

iii

iv

Resumen

Los ataques de canal lateral han sido utilizados con éxito para romper sistemas pro-
tegidos criptográficamente. Dichos ataques explotan variaciones en propiedades no
funcionales que dependen de la clave secreta, como por ejemplo variaciones en el
volumen de tráfico web o en el tiempo de ejecución de un programa. Como protección
ante estos ataques de canal lateral, normalmente se intenta eliminar o reducir dichas
variaciones, lo que puede empeorar la eficiencia, por ejemplo aumentando el tiempo
de ejecución de los programas o el volumen de tráfico que producen. En esta tesis se
investiga cómo encontrar un balance entre seguridad contra estos ataques y coste en
términos de eficiencia. Para ello, intentamos dar una respuesta rigurosa a dos preguntas
de clave:

P1: ¿Cómo elegir protecciones contra un canal lateral? Es decir, ¿cuál es un buen
balance entre seguridad y eficiencia?
P2: ¿Cómo medir la seguridad de dichas protecciones contra canales laterales en
sistemas reales?

En esta tesis se desarrollan herramientas que permiten cuantificar la seguridad y
elegir protecciones prácticas contra ataques de canal lateral. Estas herramientas se basan
tanto en modelos formales como en algoritmos y software que permiten el análisis
automático de sistemas reales.

Para contestar a P1, hemos desarrollado un método para elegir protecciones contra
canales laterales de forma sistemática. Para ello utilizamos un modelo de teorı́a de
juegos, en el que un defensor elige una protección contra un adversario que intenta llevar
a cabo un ataque. Hemos aplicado este modelo para prevenir ataques de tiempo, es
decir, ataques en los que un adversario puede deducir información sobre la clave secreta
midiendo el tiempo de ejecución de programas, ya que existe una dependencia entre
ambos. Hemos encontrado casos en los que permitir ataques de tiempo es preferible
a implementaciones en tiempo constante (que son completamente seguras ante estos
ataques), ya que se consigue mejor eficiencia sin sacrificar seguridad.

En lo referente a P2, hemos desarrollado las primeras herramientas para cuantificar
automática y formalmente la seguridad de protecciones contra ataques de canal lateral.
Distinguimos entre dos tipos de ataque: ataques de caché, en los que un adversario
explota las diferencias de tiempo provocadas por el uso de la caché de CPU; y ataques
sobre el volumen de tráfico web, en los que un adversario explota las diferencias de
volumen de tráfico encriptado.

Para analizar ataques de caché, hemos desarrollado la herramienta CacheAudit,
que a través de un análisis estático de binarios x86 cuantifica la seguridad de éstos
contra ataques de este tipo. Utilizando CacheAudit, hemos analizado implementaciones
de AES de la librerı́a PolarSSL, ası́ como los esquemas finalistas de la competición
de cifrados en flujo eSTREAM. Además, hemos analizado los efectos de diferentes
caracterı́sticas dependientes de la arquitectura, como el tamaño de la chaché o las
polı́ticas de reemplazo. Incluso, hemos ideado nuevas técnicas que proporcionan
soporte para razonamiento simbólico (a nivel de bit) de punteros en el caso de asignación

v

dinámica de memoria. Aplicando estas técnicas, hemos analizado la efectividad de
protecciones ampliamente extendidas y utilizadas de las librerı́as libgcrypt y OpenSSL.

Para analizar ataques sobre el volumen de tráfico web, hemos desarrollado algo-
ritmos eficientes que permiten cuantificar de manera formal el posible filtramiento
de información debido al volumen de tráfico, ası́ como proporcionar protecciones
confiables. Hemos aplicado estos algoritmos en ejemplos prácticos de aplicaciones
web.

vi

Acknowledgements
I am mostly grateful to my advisor Boris Köpf, for a number of reasons. First, for seeing
a potential in me early on, and encouraging me to pursue a doctorate. Second, for being
patient with me, for providing guidance in my endeavors, and for giving priceless advice.
Third, for teaching me his views on work ethic, on quality research, on career growth,
and for being more of a friend than a boss. It has been a great honour working with you!
I would also like to thank my co-authors Laurent Mauborgne, Jan Reineke, Dominik
Feld, Michael Backes, as well as my collaborators Ignacio Echeverrı́a and Guillermo
Guridi, for sharing their invaluable expertise, and making useful contributions to the
projects we have been developing. I am grateful to François Dupressoir, who provided
me with detailed feedback on early thesis drafts, as well as to Miguel Ambrona, who
helped with the Spanish translation of the thesis abstract and gave useful feedback on
my thesis draft. I want to thank the anonymous reviewers of our papers for pointing out
weaknesses in our approaches, and for pushing us into making stronger contributions.
The IMDEA Software Institute has provided a great environment for work, from the
researchers who have been doing inspirational research, to the staff who have made sure
that all aspects of our stay there have been taken care of.

On a personal note, I am deeply indebted to my girlfriend Elissaveta for putting
up with me following my passion in a different country, for being there for me in
the darkest hours, for not stopping giving all her love and support. This thesis is for
you! I would also like to thank my parents Nelly and Valentin, as well as my sister
Cveta, for supporting me throughout this journey. I am grateful to my grandmother
Nadezhda, who was encouraging my education ever since I was six, who taught me to
value work well done and the goodness in people, who would have been so proud of
me, as always. I want to thank my friends Alexi, Nadya, Violeta, and Milan, for staying
close to me despite the distance, and Gantcho, for being such a great support to me
during my frequent stays in Berlin. Almost all my time away from research was spent
travelling together with Gergana and Sergey; thanks for always being such awesome
travel companions, and for not condemning my choice for research over personal life. I
want to apologize to all those who I have ignored while being busy with the development
of my thesis: you have always stayed close to my heart, no matter how infrequently
I contacted you! I was happy to make a lot of good friends while being in Madrid:
Antonio, Srdjan, Platon, Miguel, Germán, Julián, Juan Manuel, Natalia, Artem, José
Miguel, et al.; thanks for providing me with the best possible environment for balancing
work and life, for countless discussions, lunches, beers, jokes.

Madrid, May 28, 2016

viii

Contents

1 Introduction 1
1.1 Trade-offs in Side-Channel Protection 3
1.2 Research Questions . 5
1.3 Contributions . 6
1.4 Thesis Outline . 7
1.5 Thesis Publications . 8

2 Background and Related Work 9
2.1 Information-Theoretic Notions . 9

2.1.1 Entropy Definitions . 9
2.1.2 Chain Rules . 11

2.2 Related Work . 12

I Timing Attack Protection 17

3 Rational Protection Against Timing Attacks 21
3.1 Introduction . 21
3.2 Choice of Optimal Protection . 23

3.2.1 Motivating Example . 23
3.2.2 Countermeasure Configuration as a Game 23
3.2.3 Utilities of the Players . 24
3.2.4 Solving the Game . 25
3.2.5 Soundness of Solutions Based on Probability Bounds 26

3.3 Bounds on the Probability of Key Recovery 27
3.3.1 Our Approach . 27
3.3.2 Generic Algorithms for Computing Discrete Logarithms . . . 27
3.3.3 Blinded Side-Channels . 29

ix

3.3.4 Bounds for Combined Adversaries 29
3.4 Computing the Equilibrium . 30

3.4.1 Adversary’s Optimization Problem 30
3.4.2 Defender’s Optimization Problem 31

3.5 Case Study . 32
3.5.1 Experimental Setup . 32
3.5.2 ElGamal Implementation in Libgcrypt 32
3.5.3 Constant-Time ElGamal . 33
3.5.4 Results . 33

3.5.4.1 Varying the Modulus Size 33
3.5.4.2 Varying the Access Rate ρacc 33
3.5.4.3 Varying the Key Deployment Time 34
3.5.4.4 Using a Safe Prime Modulus 34
3.5.4.5 Varying the Number of Buckets 35

3.5.5 Use Cases . 35
3.6 Related Work . 36
3.7 Conclusions and Future Work . 37

II Cache Attack Protection 41

4 Static Analysis of Cache Side-Channels 45
4.1 Caches and Programs . 45

4.1.1 A Primer on Caches . 45
4.1.2 Programs and Computations 46
4.1.3 Cache Updates and Cache Effects 47
4.1.4 Replacement Policies Defined by Permutations 48

4.2 Side-Channels . 50
4.3 Automatic Quantification of Cache Side-Channels 51

4.3.1 Sound Abstraction of Leakage 52
4.3.2 Abstraction Using a Control Flow Graph 53
4.3.3 Local Soundness . 54
4.3.4 Soundness of Delivered Bounds 55

5 CacheAudit: A Tool for the Static Analysis of Cache Side-Channels 57
5.1 Introduction . 57
5.2 Illustrative Example . 60
5.3 Adversary Model . 61

5.3.1 Adversary Views . 61
5.3.2 Adversarially Chosen Input 62

5.4 Tool Design and Implementation . 63
5.4.1 Control Flow Reconstruction 64
5.4.2 Iterator . 64

x

5.4.3 Abstract Domains . 65
5.5 Abstract Domains for Cache Adversaries 66

5.5.1 Domains for cache states . 66
5.5.2 A Domain for Traces . 69
5.5.3 A Domain for Time . 71

5.6 Case Studies . 71
5.6.1 AES . 71
5.6.2 The eSTREAM Portfolio . 74

5.6.2.1 HC-128 . 75
5.6.2.2 Rabbit . 75
5.6.2.3 Salsa20 . 75
5.6.2.4 Sosemanuk . 76

5.6.3 Sorting Algorithms . 76
5.6.4 Discussion . 78

5.7 Related Work . 79
5.8 Challenges for Future Work . 80
5.9 Conclusions . 82

6 Rigorous Analysis of Software Countermeasures against Cache Attacks 83
6.1 Introduction . 83
6.2 Illustrative Example . 84
6.3 Security Against Memory Trace Attacks 86

6.3.1 A Hierarchy of Memory Trace Observers 86
6.3.2 Quantifying Leaks . 88

6.4 Abstract Domain for Cache-Aware Pointer Arithmetic 89
6.4.1 Representation . 89
6.4.2 Concretization and Counting 90
6.4.3 Update . 90

6.5 Abstract Domains for Memory Access Traces 93
6.5.1 Representation . 93
6.5.2 Concretization and Counting 94
6.5.3 Update and Join . 95

6.6 Case Study . 96
6.6.1 Tool building . 96
6.6.2 Target Implementations . 96
6.6.3 Square-and-Multiply Modular Exponentiation 97
6.6.4 Windowed Modular Exponentiation 99
6.6.5 Discussion . 104
6.6.6 Performance . 105

6.7 Related Work . 105
6.8 Conclusions . 106

xi

III Web-Traffic Attack Protection 107

7 Automatic Evaluation of Protections against Web Side-Channels 111
7.1 Introduction . 111
7.2 Web-Traffic as an Information-Theoretic Channel 113

7.2.1 Threat Scenario . 113
7.2.2 Basic Model . 113

7.3 Algorithms for Practical Evaluation of Web Applications 117
7.3.1 Modeling User Behavior as a Markov chain 117
7.3.2 Computing the Initial Uncertainty 118

7.3.2.1 Initial Uncertainty Based on Stationary Distributions 118
7.3.2.2 Using PageRank for Practical Computation of the

Initial Uncertainty 119
7.3.3 Constructing Path-Aware Countermeasures 119

7.3.3.1 Ensuring Indistinguishability of Paths 120
7.3.3.2 Implementing Path-Aware Countermeasures 120

7.4 Case Studies . 121
7.4.1 Web Navigation . 121
7.4.2 Auto-Complete Input Field 124

7.5 Related Work . 127
7.6 Conclusions and Future Work . 128

8 Conclusions 129
8.1 Summary . 129
8.2 Limitations and Future Work . 130

8.2.1 Systematic Choice of Protections against Further
Side-Channel Attacks . 130

8.2.2 Performance Overhead of Countermeasures 131

Bibliography 133

xii

1
Introduction

Side-channel attacks are a class of cyber-attacks that exploit information revealed by
non-functional properties of implementations. Usually, side-channel attacks target
cryptographically-secured or privacy-sensitive systems. Examples for non-functional
properties used by side-channel attacks, and the attacks’ goals, are:

• programs’ execution times [1], devices’ power consumption [2], or devices’
electromagnetic radiation [3], used for recovering cryptographic keys;

• the volume of encrypted network traffic, used for revealing web browsing pat-
terns [4], as well as the content of VoIP conversations [5];

• noise produced by keyboards, used for revealing the sequence of pressed keys [6],
as well as noise produced by printers, used for revealing the content of printed
text [7].

This thesis performs a rigorous study of countermeasures against three types of
attacks, which we present in the following.

Timing Attacks Classical timing attacks are attacks that exploit differences in the
total execution time of programs. The first timing attacks against cryptosystems were
demonstrated in 1996 by Kocher [1]. Brumley and Boneh [8] demonstrate remote timing
attacks, which extract private keys of an OpenSSL-based remote web server. In general,
targets for timing attacks have been implementations with input-dependent execution
times, such as cryptosystems in which the execution time depends on the secret key.
An example of input-dependent execution time is exhibited by the square-and-multiply
algorithm for modular exponentiation (see Figure 1.1), used in popular public-key
cryptosystems such as RSA and ElGamal. The algorithm goes through the bits of the
exponent and performs a (slow) multiplication only for bits equal to 1. Measuring the
total exponentiation time can reveal the number of times a multiplication was performed,
thus revealing the number of set bits of the exponent (i.e., the exponent’s Hamming
weight).

1

CHAPTER 1. INTRODUCTION

1 // Input: b, e,m
2 // Output: be mod m
3 r := 1
4 for i := |e| − 1 downto 0 do
5 r := sqr(r)
6 r := mod(r, m)
7 if ei = 1 then
8 r := mul(b, r)
9 r := mod(r, m)

10 return r

Figure 1.1: Pseudocode for square-and-multiply modular exponentiation

Cache-Timing Attacks Cache-timing attacks1 are attacks that exploit differences
in the time that memory accesses take, due to the presence or absence of data in the
CPU cache. These differences can be detected e.g. by an adversary who shares the
CPU cache with the victim process, and concurrently probes the cache. The first cache
attacks against cryptosystems were presented in 2005 [9, 10, 11]. Cache attacks for
key recovery have been demonstrated to a remote server [12], as well as between co-
located virtual machines [13,14]. Oren et al. demonstrate in-browser cache attacks [15],
which infer mouse and network activity of users who have loaded malicious JavaScript
code. In general, targets for cache attacks have been implementations that perform
input-dependent cache accesses. Vulnerable input-dependent cache accesses may be
due to input-dependent lookups in precomputed lookup tables, e.g. in implementations
of AES [9, 11], or due to input-dependent control-flow, e.g. in implementations of the
square-and-multiply algorithm [13, 14]. An example of input-dependent cache accesses
is given in Figure 1.2, which shows the compiled code corresponding to the conditional
if-branch in square-and-multiply (see Figure 1.1, lines 7–9). If the input-dependent
if-branch is taken, a high number of memory accesses is performed; an adversary able
to detect these cache accesses, can determine the value of the exponent.

Web-Traffic Attacks Web-traffic attacks exploit differences in the volume of en-
crypted network traffic. In these attacks, the adversary inspects the sizes and numbers
of network packets, which allows the recovery of information about the user’s web-
browsing behavior. Early web-traffic attacks were demonstrated by Cheng and Avnur
in 1998 [16]. Web-traffic attacks have used passive analysis of encrypted traffic for
website fingerprinting [17, 18], i.e., revealing which websites were visited by users; for
reconstruction of the execution path in web applications, which may reveal health or
financial information about users [4]; for deanonymization of Tor hidden services [19].

1Throughout this thesis, we use the wide-spread namings of cache attacks for cache-timing attacks,
and timing attacks for classical timing attacks exploiting the total execution time.

2

Chapter 1. Introduction

Figure 1.2: Code from the square-and-multiply modular exponentiation implementation
from libgcrypt 1.5.2 with a 3072-bit base, compiled with gcc. The highlighted code is
executed in case the if-branch is taken. This code contains calls to the functions mul
and mod, and results in almost 2 · 105 cache accesses.

Furthermore, active web-traffic attacks have been demonstrated that allow recovering
values from secure cookies [20, 21]. Web-traffic attacks are possible because despite
encryption, the sizes of objects transmitted over the network may reveal their content.
For example, input-fields with an auto-complete functionality are usually implemented
by sending a query after each key-stroke, and downloading lists of suggestions for that
query. These lists have different sizes, depending on the number of characters they
contain. Figure 1.3 shows the byte-sizes of such lists corresponding to the first typed
character in a query; observing sizes corresponding to a sequence of typed characters
can reveal the content of the user’s queries.

Figure 1.3: The sizes of HTTP frames downloaded after typing one letter into an
auto-complete input field, using the Google Autocomplete API. The size depends on
the number of characters in the downloaded list of suggestions.

1.1 Trade-offs in Side-Channel Protection
Diverse mechanisms for protecting against side-channel attacks have been proposed,
ranging from changes in the underlying software, through changes in the operating

3

CHAPTER 1. INTRODUCTION

systems (e.g., [22]), deployment of specific network proxies (e.g., [23, 24]), to changes
in hardware (e.g., [25, 26]).

A practical example for hardware-based protections against cache attacks is the
AES instruction set (AES-NI), which was announced by Intel in 2009 [26, 27]. AES-NI
allows implementing cache-attack resistant implementations that run faster than purely
software implementations of AES. Despite the attractive features of such hardware-
based protections, they cannot be considered a universal solution for the immediate
future because of their slow roll-out (AES-NI was still missing in some Intel CPUs
released in 2015 [28]), as well as the prevalence of legacy hardware.

In this thesis, we focus on software-based protections against side-channel attacks.
Software-based protections are the most immediate path between the design of protec-
tions and their deployment: software patches to existing software packages offer the
possibility of fixing security problems in a matter of days after their discovery. A major
challenge in the implementation and deployment of such protections is that there is
usually a conflict between two goals that the protections aim to achieve:

(1) the protection should eliminate the security problem, i.e., make the side-channel
attack impossible;

(2) the protection should not harm the performance of the system.

To illustrate this conflict, we consider two extreme cases. First, goal (2) can be trivially
met if no dedicated side-channel protection is applied; this will leave the system exposed
to potential attacks. Second, goal (1) can be met by eliminating the root cause of the
side-channel. Straightforward approaches to turn a leaky implementation into a leak-
free implementation are: disable the cache to eliminate cache attacks; make a program
return in the worst-case execution time to eliminate timing attacks; transmit constant
traffic to eliminate web-traffic attacks. Such straightforward approaches may induce
heavy performance penalties.

An active research area in cryptography is the development of fast side-channel-
free implementations of cryptographic systems, e.g., see [29, 30, 31, 32, 33]. These
works aim at implementing algorithms that are immune to timing-based attacks by
ensuring that there are no secret-dependent timing variations, e.g. by avoiding secret-
dependent control flow or table lookups. However, even very efficient side-channel-
free implementations may offer worse performance than vulnerable implementations,
which may hamper their adoption. For example, the constant-time implementation
of AES-GCM authenticated encryption by Käsper and Schwabe is twice slower than
non-constant-time, lookup-table-based implementations [29].

Often, instead of eliminating possible side-channel leaks, they are being mitigated.
This is done by applying a protection that defeats some known side-channel attacks,
or makes attacks harder for adversaries, without offering a proof that the protection
defeats all side-channel attacks of a certain class. The result is a system that is believed
to be less vulnerable to attacks, in which performance penalties are limited. For
example, Kocher [1] proposed the use of blinding for protecting against timing attacks

4

Chapter 1. Introduction

against modular exponentiation: input blinding (randomizing the base), or exponent
blinding (randomizing the exponent). While input blinding has seen a wide adoption in
practice [34, 35, 36], it has not been shown that it eliminates all timing attacks; as for
exponent blinding, there are indications that it does not eliminate timing attacks, but
makes them harder for adversaries [37].

1.2 Research Questions
In the presence of performance penalties introduced by side-channel protections, when
deploying a protection, both the security and the performance play a role in deciding in
favor of a protection. This leads to our first research question:

Q1: How to choose a balance between the security guarantees and the performance
penalties of side-channel countermeasures?

While numerous side-channel countermeasures have been proposed, systematic ap-
proaches for making a decision in favor of one such countermeasure have not been, to
the best of our knowledge, the subject of theoretical or practical research.

In order for a systematic choice between two (or more) protections to be made, a
way of measuring and comparing the security and the performance of systems is needed.
In this thesis, we measure performance in terms of average execution time (in the case
of timing attacks), and average network traffic consumption (in the case of web-traffic
attacks). The need for measuring security leads to our second research question:

Q2: How to quantify the security of side-channel protections on practical systems?

We favor methods for a formal quantification of the security of systems. These
methods come with a proof, which is valid for clearly defined models. For quantifying
the security of side-channel protections, we rely on models and methods for quantitative
information flow (QIF) analysis [38]. QIF analysis usually uses information-theoretic
metrics to quantify the information that flows from a secret input to a public output.
In the context of this thesis, the secret input is either a cryptographic key or a user’s
browsing pattern, and the public output is the side-channel observations, e.g. a program’s
execution time, a cache state, a sequence of memory blocks loaded into cache, or a
sequence of byte-sizes of encrypted network packets. QIF analysis has been used for
quantifying side-channel leaks [39], and is particularly appealing because it has shown
potential for automation [40,41,42]. Prior to the work presented in this thesis, it had been
an open question whether QIF analysis of side-channel leaks was possible on practical
security-critical systems, i.e., whether it can be scalable enough to capture practically
deployed software such as implementations of popular cryptographic algorithms.

This thesis develops tools that enable rigorous answers to the two research questions.
These tools include the necessary models needed for formal reasoning about side-
channel protections, as well as algorithms and software tools needed for the automatic
evaluation of practical systems.

5

CHAPTER 1. INTRODUCTION

1.3 Contributions
The contributions of the thesis are summarized in the following.

Modeling Side-Channel Adversaries We develop novel models that enable the rea-
soning about several types of practically relevant side-channel adversaries. First, our
models capture timing adversaries who can perform both online steps (i.e. collect
side-channel measurements), and offline steps (i.e. perform a computational attack).
Second, our models capture cache adversaries of several types, among which access-
based adversaries who can observe the final cache state, and trace-based adversaries
who can observe sequences of accessed memory addresses or memory blocks. Third,
our models capture web-traffic adversaries who can observe traffic corresponding to
sequences of visited webpages. We apply these models for addressing the two research
questions introduced in Section 1.2.

Systematic Choice of Protections Addressing Q1, we develop the first systematic
approach for choosing side-channel countermeasures. For this, we cast the problem in a
game-theoretic model, where a defender chooses a protection against an adversary who
performs an attack. Both the defender and the adversary are assumed to be rational, i.e.,
they seek to optimize their personal utilities. We apply this approach for reasoning about
timing attack countermeasures, and we identify cases where leaky countermeasures are
preferable to leak-free, constant-time implementations, as they offer better performance
without sacrificing security. This result is the first formal argument that favors a leaky
side-channel protection over a constant-time implementation.

Quantification of Security in Practical Systems Addressing Q2, we develop the
first tools for the automatic formal quantification of the security of side-channel protec-
tions in practical systems. To enable the analysis of protections against cache attacks, we
develop the tool CacheAudit, which performs static analysis of x86 binaries, and quan-
tifies their security with respect to cache adversaries. CacheAudit enables us to perform
several case studies, where we analyze implementations of symmetric cryptosystems
from libraries such as PolarSSL and NaCl, and reason about the effectiveness of widely-
deployed countermeasures against side-channel attacks on asymmetric cryptosystems
from the libgcrypt and OpenSSL libraries. To enable the analysis of protections against
web-traffic attacks, we develop scalable algorithms that enable the analysis and protec-
tion of web applications, and we demonstrate these algorithms on practical instances of
web applications.

6

Chapter 1. Introduction

1.4 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, we present back-
ground on the information-theoretic notions we use for quantifying side-channel leakage,
and review related work. The exposition of the thesis contributions is presented in
Chapters 3 to 7, which are divided into three parts, according to the type of side-channel
attacks we address: in Part I we address timing attack protection, in Part II we address
cache attack protection, and in Part III we address web-traffic attack protection. The
thesis concludes in Chapter 8.

In Part I, which consists of Chapter 3, we demonstrate a systematic approach for
choosing protections against timing attacks. The choice is a solution in a two-staged
game between a defender and an adversary. In this game, first the defender chooses a
protection, and then the adversary performs an attack combining online steps (collecting
side-channel measurements), and offline (computational) steps. The offline steps of
the adversary are captured in the generic group model, and the combination between
computational and side-channel steps is done relying on unpredictability entropy, a
computational entropy notion (see Chapter 2). We demonstrate a practical evaluation of
our approach, on an implementation of the ElGamal encryption scheme from libgcrypt.

Part II is organized in three chapters. In Chapter 4 we provide the necessary back-
ground and formalization on caches, static analysis, and cache side-channel quantifica-
tion. In Chapter 5 we present CacheAudit, a tool that enables the formal quantification
of cache leakage from x86 executables, by performing static analysis based on abstract
interpretation. CacheAudit supports cache characteristics such as the LRU, FIFO, PLRU
replacement policies, and allows the analysis of executables with respect to adversaries
with different observational capabilities: observing the final cache state, a sequence of
cache hits or misses, or the total execution time. Using CacheAudit, we analyze the
implementation of AES from PolarSSL (now mbed TLS), as well as the finalists of
the eSTREAM stream cipher competition. In Chapter 6 we present a tool built as an
extension to CacheAudit, which enables the static analysis of leaks from dynamic heap
memory, and captures adversaries who can make fine-grained observations, e.g. observ-
ing sequences of accessed memory addresses or memory blocks. We use this tool to
analyze side-channel countermeasures from implementations of modular exponentiation
in different versions of libgcrypt and OpenSSL.

In Part III, which consists of Chapter 7, we present algorithms for dealing with web-
traffic attacks. We present an algorithm for the efficient quantification of the information
leaked to an adversary observing traffic patterns corresponding to sequences of accessed
web pages; furthermore, we present an algorithm for generating protections against
web-traffic attacks. The generated protections span a specter of trade-offs between the
security guarantees and the performance overhead. We use these algorithms to evaluate
a regional-language Wikipedia, and an auto-complete input field.

7

CHAPTER 1. INTRODUCTION

1.5 Thesis Publications
The content of this thesis is based on several publications. These publications are the
result of collaborative effort, and I have contributed significant parts in them.

• Chapter 3 is based on publication [43], which is joint work with Boris Köpf,
and was published in the proceedings of the 28th IEEE Computer Security
Foundations Symposium (CSF) in 2015.

• Chapter 4 and Chapter 5 are based on publication [44], which is joint work
with Dominik Feld, Boris Köpf, Laurent Mauborgne and Jan Reineke, and was
published in the proceedings of the 22nd USENIX Security Symposium in 2013,
and on its significantly extended version [45], which was published in the ACM
Transactions on Information and System Security (TISSEC) in 2015.

• Chapter 6 is based on publication [46], which is joint work with Boris Köpf, and
at the time of writing of this thesis is under submission.

• Chapter 7 is based on publication [47], which is joint work with Michael Backes
and Boris Köpf, and was published in the 20th Network and Distributed Systems
Security Symposium (NDSS) in 2013. This chapter is a continuation of the
research the author published in his Master thesis [48], which presents models
for formal reasoning about web leaks.

8

2
Background and Related Work

In this chapter, we start by presenting background on the information-theoretic notions
used in this thesis for quantifying the security of side-channel protections. Furthermore,
we present related work.

2.1 Information-Theoretic Notions

For quantifying the security of side-channel protections, throughout this thesis we use
three different information-theoretic entropy notions: Shannon entropy, min-entropy,
and unpredictability entropy. The first two have seen a wide use in quantitative infor-
mation flow (QIF) literature [38, 39, 49]; the last one is an entropy notion that captures
computationally bounded adversaries [50]. In this section, we present the three entropy
notions.

2.1.1 Entropy Definitions

Information-theoretic entropy is used for quantifying the amount of randomness of
a probability distribution. Consider the random variables X and Y . The entropy of
X quantifies the randomness of the probability distribution P[X], and the conditional
entropy of X given Y quantifies the randomness of the conditional probability distribution
P[X|Y]. In the context of quantitative information flow, we model a secret value
(e.g., a cryptographic key) as the random variable X, and an observable value (e.g.,
a side-channel observation) as the random variable Y . We use the entropy of X as a
quantitative measure of the a-priori uncertainty about the value of the secret, and we
use the conditional entropy of X given Y as a quantitative measure of the uncertainty
about the secret value, when the observable value is known.

The first information-theoretic notion we consider is Shannon entropy, which was
proposed by Claude Shannon in 1948, as part of a general theory of communication [51].

9

CHAPTER 2. BACKGROUND AND RELATED WORK

Definition 1 (Shannon entropy). The Shannon entropy of X is defined as

H(X) = −
∑

x

P[X = x] log2 P[X = x] .

The conditional entropy H(X|Y) of X given Y is defined as

H(X|Y) =
∑

y

P[Y = y]H(X|Y = y) .

Shannon entropy is interesting as a measure of confidentiality because one can
use it to give a lower bound for the expected number of steps that are required for
determining the value of X by brute-force search. Observe that the optimal strategy
for this is to try all values of X in order of their decreasing probabilities. For this, let
X be indexed accordingly: P[X = x1] ≥ P[X = x2] ≥ Then the expected number
of guesses (also called guessing entropy [52]) required to determine X is defined as
G(X) =

∑
1≤i≤|X| i P[X = xi], and the conditional version G(X|Y) is defined in the natural

way [53]. The following result [52, 53] bounds G(X|Y) in terms of Shannon entropy.

Proposition 1. G(X|Y) ≥ 1
42H(X|Y)

Note however that for heavily skewed X, the expected number of guesses required
to determine X can be large, even if an attacker has a considerable chance of correctly
guessing the value of X in one attempt. To see this, consider a random variable X
distributed by P[X = x1] = 1

2 and P[X = xi] = 1
2n , for i ∈ {2, . . . , n}: the expected

number of guesses to determine X grows linearly with n, but the probability of correct
guessing in one shot remains 1

2 .
The min-entropy H∞ accounts for such scenarios by capturing the probability of

correctly guessing the secret in one attempt, i.e., it delivers worst-case rather than
average-case guarantees.

Definition 2 (Min-entropy). The min-entropy of X is defined as

H∞(X) = − log2 max
x∈X

P[X = x].

The conditional min-entropy of X given Y, is defined as

H∞(X|Y) = − log
∑
y∈Y

P[Y = y] max
x∈X

P[X = x|Y = y].

As discussed above, the entropy definitions 1 and 2 can be used for reasoning about
the ability of adversaries to guess the value of random variables. Those definitions
capture adversaries with unbounded computational capabilities; however, cryptography
considers probability distributions that appear to be random to computationally bounded
adversaries, e.g. pseudo-random distributions [54].

Computational entropy notions [50] allow reasoning about the apparent randomness
of probability distributions. We use one such entropy notion – unpredictability entropy,

10

Chapter 2. Background and Related Work

which generalizes min-entropy to computational settings. More specifically, it captures
the probability of a resource-bounded algorithm to estimate the value of a random
variable. Unpredictability entropy has been defined for different computational models,
such as circuits of bounded size [50] and polynomial time algorithms [55].

In this thesis, we consider computational models in which computational steps are
modeled as queries to an oracle [56, 57]. For example, brute-force guesses can be
modeled as queries to an oracle which outputs true iff the guess is correct. We define
unpredictability entropy w.r.t. bounds on the number of accesses to an oracle O(X) that
receives as input the value of a random variable X.

Definition 3 (Unpredictability entropy). X has unpredictability entropy at least t bits
for m calls to O, written Hm

O
(X) ≥ t, if for all algorithms Am

O(X) that can make at most m
queries to O(X),

P[Am
O(X) = X] ≤ 2−t .

Note that for m = 0, unpredictability entropy and min-entropy coincide, i.e.,
H0
O

(X) = H∞(X) . The reason for this is that the best algorithm for predicting X is
one that has the most likely value of X hardcoded.

Next we define a conditional version of unpredictability entropy. For this we
consider algorithms Am

O(X)(Y) that can observe the output of a random variable Y that is
jointly distributed with the oracle input X.

Definition 4 (Conditional unpredictability entropy). X has unpredictability entropy
at least t conditioned on Y with respect to oracle O, written Hm

O
(X|Y) ≥ t, if for all

algorithms that can take one sample from Y and can make at most m queries to O(X),

P[Am
O(X)(Y) = X] ≤ 2−t .

2.1.2 Chain Rules
Key properties for reasoning about entropy are its chain rules. Shannon entropy satisfies
a strong chain rule, which establishes the connection between the conditional and the
joint entropy.

Lemma 1 (Strong chain rule for Shannon entropy).

H(X|Y) = H(X,Y) − H(Y) .

While this chain rule is not satisfied by the remaining entropy notions we consider,
weaker chain rules exist, which find a broad use. Those chain rules are sufficient to
show that when conditioned on Y , the entropy of X decreases gracefully. Below, we
give such chain rules for Shannon, min-, and unpredictability entropy, and we enclose
the proof of the latter. Note that the chain rule is not necessarily satisfied for other
entropy notions, such as HILL entropy [58].

11

CHAPTER 2. BACKGROUND AND RELATED WORK

Lemma 2 (Chain rule for Shannon entropy).

H(X|Y) ≥ H(X) − | ran(Y)| .

Lemma 3 (Chain rule for min-entropy).

H∞(X|Y) ≥ H∞(X) − | ran(Y)| .

Lemma 4 (Chain rule for unpredictability entropy [58]). If log2 | ran(Y)| = `, then

Hm
O

(X) ≥ t ⇒ Hm
O

(X|Y) ≥ t − ` .

Proof. Assume that Hm
O

(X|Y) < t − `. By the definition of unpredictability entropy
it follows that there exists an algorithm Am

O
such that P[Am

O(X)(Y) = X] > 2−t+`. We
construct the algorithm Bm

O
, which takes no input, chooses y′ ∈ ran(Y) u.a.r. (which we

represent by the random variable Y ′), and returns Am
O(X)(y

′). Then we obtain

P[Bm
O(X) = X] = P[Am

O(X)(Y
′) = X] (2.1)

= P[Am
O(X)(Y) = X ∧ Y = Y ′] (2.2)

= P[Am
O(X)(Y) = X] · P[Y = Y ′] (2.3)

= P[Am
O(X)(Y) = X] · 2−` (2.4)

> 2−t+` · 2−` = 2−t , (2.5)

where (2.3) follows because both events are independent, i.e., the fact that Y collides
with a uniformly chosen element does not affect the probability that the algorithm
guesses X correctly, and vice versa. �

2.2 Related Work

Quantitative Information Flow Analysis
Early work on quantitative information flow (QIF) analysis by Denning [59] uses
information-theoretic definitions to quantify information transferred between variables
in different states of program execution. More recent works provide definitions to
quantify the transformations from system inputs to system outputs [38], which have
been used for statically bounding secret information that leaks in a program [60]. Such
definitions have been used for quantifying leaks in anonymity protocols [61]. The works
cited above quantify flows in terms of Shannon entropy; further works on QIF analysis
use min-entropy [49, 62], and Alvim et al. [63] propose a generalization of min-entropy
which allows flexible definitions of the adversary’s gain [63].

QIF analysis for reasoning about side-channels was introduced by Köpf and Basin [39].
Earlier work exists on the quantification of the related but distinct problem of covert

12

Chapter 2. Background and Related Work

channels [64, 65], i.e., where an adversary aims to transmit information from within a
system.

This thesis directly builds upon the results of two related papers. First, Köpf
and Dürmuth [53] is a starting point of the development in Chapter 3. The authors
prove bounds on the information leaked by a cryptosystem protected from timing
attacks using input blinding and bucketing as a countermeasure, where tuning the
bucketing countermeasure leads to a trade-off between the security and performance
of the protection. We connect those leakage bounds with cryptographic models of
computation [56] to capture adversaries who combine side-channel information with
computational steps. Further, the authors propose algorithms for optimal choice of the
bucketing when given a constraint on the overhead, or on the desired security. We use
those algorithms as part of our more general approach for choosing a protection: in
addition to tuning the bucketing countermeasure, our defender chooses the size of the
key, and is opposed to a rational adversary who chooses an optimal attack.

Second, the development of CacheAudit (see Chapter 5) is inspired by a feasibility
study by Köpf, Mauborgne, and Ochoa [66]. They quantify cache side-channels
by connecting a commercial, closed-source tool for the static analysis of worst-case
execution times [67] to an algorithm for counting concretizations of abstract cache states.
The application of the tool to side-channel analysis is limited to access-based adversaries
and requires heavy code instrumentation. In contrast, CacheAudit was built with cache
attacks in mind, and while the results are not directly comparable because they are
obtained for different platforms (x86 vs. ARM), the results of our experiments suggest
that the bounds provided by CacheAudit are significantly tighter. CacheAudit also
provides tailored abstract domains for various kinds of cache side-channel adversaries,
and its modularity allows the support of various architecture features such as the PLRU
replacement policy, and it is open for further extensions. In contrast to [66], analysis of
binaries is possible without any code instrumentation.

Our work is related to other works on automation of QIF analysis [60], and the
automation by reduction to counting problems appears in [40,42,68,69]; the connection
to abstract interpretation appears in [41]. Approaches that can deal with adversarially
chosen input [39, 70] are currently limited to systems with small state-spaces due to the
lack of efficient abstractions. With progress on such abstractions, bounds such as the
ones from Chapter 3 could be obtained automatically from code and platform models
using CacheAudit or similar analyses (see Chapter 5).

McCamant and Ernst [71] develop a tool that uses dynamic taint analysis to bound
information leakage along an execution path. They demonstrate their approach on
practical programs, among which an SSH client performing an authentication. In
contrast to this work, we perform static analysis that considers all execution paths.

Mardziel et al. [72] consider information-flow in dynamic systems, where defender
and adversary can interact. Their focus is on secrets that are dynamically changing,
whereas our approach specifically considers the aggregation of information about long-
term secrets, such as secret keys.

Zhang et al. [73] study quantitative approaches for mitigating timing leaks by

13

CHAPTER 2. BACKGROUND AND RELATED WORK

adaptively delaying outgoing messages. They consider a covert channel adversary, i.e.
one that aims to transmit information from within a system. This adversary is stronger
than, and the corresponding notion of success (i.e. successful transmission) is different
from, the ones we consider in this thesis.

Game Theory and Security Trade-Offs
A substantial body of research uses game theory for reasoning about trade-offs between
security (or privacy) and conflicting goals. Stackelberg games are particularly prevalent
in the literature, and the fact that the adversary reacts to the defender’s commitment
reflects Kerckhoff’s principle.

For example, [74] uses Stackelberg games for computing the optimal placement of
checkpoints and canine patrol routes for achieving (physical) security, e.g., at airports.
In that setting, [75] considers a defender who aims to minimize cost while maintaining
a fixed level of protection, which is similar in spirit to our definitions of security.
In [76], the authors use Stackelberg games to reason about the configuration of audit
mechanisms, where the trade-off is between the cost of detecting or preventing incidents.
Furthermore, Stackelberg games have been used for choosing an optimal balance
between privacy and service quality [77, 78], e.g. in location privacy mechanisms.

Khouzani et al. [79] explore game-theoretic models for capturing trade-offs between
security and usability when picking secrets. As examples, they consider picking unique
passwords and picking the size of a short cryptographic key.

Work in rational cryptography (see [80] for a recent overview) also considers
adversaries as players aiming to maximize their utilities. One advantage of this adversary
model is that one can circumvent impossibility results that hold for stronger, worst-case
adversaries. The game definition we propose in Chapter 3 is atypical in the sense that it
captures worst-case adversaries who spend all resources and relies on the utility function
to describe their optimal usage.

Leakage-Resilient Cryptography
Leakage-resilient cryptographic constructions have been proposed, where information
leakage is limited within each iteration of the construction [81, 82]. Such constructions
include pseudo-random generators and pseudo-random functions, and usually rely
on re-keying strategies [83]. Most works in that direction consider physical side-
channel attacks such as analysis of power and electromagnetic radiation. For reasoning
about cache-based attacks, Barthe et al. [84] propose an extension to CacheAudit
(see Chapter 5), which allows reasoning about leakage-resilient cryptosystems, for
concurrent access-based cache adversaries.

Related to our work in Chapter 3, Belaı̈d et al. [85] also reason about trade-offs
between security and performance in side-channel attacks, where they focus on the
decision between the masking countermeasure and a leakage-resilient primitive. As in
our work, they investigate which implementation offers the best performance for a fixed

14

Chapter 2. Background and Related Work

level of security. They consider power analysis attacks and use the best known attacks
as a security benchmark, whereas we consider timing attacks and use the best known
security guarantees as a benchmark. Our approach relies on game theory for framing and
solving the decision problem, which offers the advantage of a clean interface between
the security guarantees and the algorithmic challenges.

Constant-Time Cryptography
Constant-time cryptographic implementations aim at securing against timing-based
attacks by ensuring that there are no secret-dependent timing variations, e.g. by avoiding
secret-dependent control flow or table lookups [29,30,31,32,33]. Examples for this can
be found in the NaCl cryptographic library [31]. Formal approaches have been proposed
for reasoning about constant-time implementations [86, 87, 88]. For example, Almeida
et al. develop a static analyzer that can automatically confirm that programs follow
that regime [86], and Barthe et al. [87] establish that adhering to that policy provides
security against very strong adversary models. Using CacheAudit, we analyze such
implementations, e.g. NaCl’s Salsa20 (see Chapter 5, Section 5.6.2), as well as constant-
time coding patterns for access to lookup tables (see Chapter 6, Section 6.6.4), and we
establish their security with respect to several models of cache-based adversaries.

15

CHAPTER 2. BACKGROUND AND RELATED WORK

16

Part I

Timing Attack Protection

17

The first part of the thesis presents a systematic approach for choosing a protection
against timing attacks, on the example of cryptosystems based on discrete logarithms.
The solution relies on a game-theoretic equilibrium in a game between a defender
who strives to reduce the protection costs by choosing the key size and a side-channel
protection, and a resource-bounded adversary who strives to maximize the probability of
key recovery by choosing an attack strategy. At the heart of the equilibrium computation
are novel bounds for the probability of key recovery, which are expressed as a function
of the applied protection and the attack strategy.

The approach is applied in a practical case study, where we identify optimal pro-
tections for libgcrypt’s ElGamal implementation. We determine situations in which
the optimal choice is to use a defensive, constant-time implementation and a small key,
and situations in which the optimal choice is a more aggressively tuned (but leaky)
implementation with a longer key.

The work presented in this part is the first systematic approach for obtaining an
answer to research question 1 (Q1) in Section 1.2. Our main contributions are exposed
in Chapter 3.

19

20

3
Rational Protection Against Timing Attacks

3.1 Introduction

Side-channel attacks break the security of systems by exploiting signals that are unwit-
tingly emitted by the implementation. Examples of such signals are the consumption
of power [2], memory [89], and execution time [1]. Execution time is a particularly
daunting signal because it can be measured and exploited from a long distance [90],
which opens the door for a potentially large number of attackers.

In theory, one can get rid of timing side-channels by avoiding the use of secret-
dependent control flow and of performance-enhancing features of the hardware archi-
tecture, such as caches and branch prediction units. However, this defensive approach
comes at the price of a performance penalty. In practice, one is hence faced with the
problem of striking a balance between performance and security against timing attacks.

In this chapter we present a game-theoretic approach for solving this problem. The
key novelty of our approach is a simple and practical model of the side-channel adversary
as a player that can distribute the available resources between timing measurements
and offline search for the secret. Our approach is focused in that we consider only
cryptosystems based on discrete logarithms and input blinding as a countermeasure,
yet it is comprehensive in that it goes all the way from formal modeling to identifying
the optimal protection for a library implementation of ElGamal. A highlight of our
results is that we are the first to formally justify the use of a fast but (slightly) leaky
implementation over a defensive constant-time implementation, for some parameter
ranges.

On a technical level, we identify the optimal countermeasure configuration as an
equilibrium of a two-stage (Stackelberg) game between two rational players: an adver-
sary and a defender. The adversary strives to maximize the probability of key recovery,
by distributing bounded resources between timing measurements and computational
search for the key. The defender strives to minimize the cost of protection, while
maintaining a certain security level given in terms of an upper bound on the probability
of adversary success. The defender’s means to achieve this are the choice of the key

21

CHAPTER 3. RATIONAL PROTECTION AGAINST TIMING ATTACKS

length and the configuration of the countermeasure.

At the heart of the equilibrium computation are novel bounds for the probability of
key recovery in the presence of side-channel information. We derive these bounds in
the generic group model and under the assumption that the cryptosystem is based on
discrete logarithms and protected against timing attacks by an idealized form of input
blinding.

Our starting point is an existing upper bound for the amount of information contained
in n timing measurements, when the execution time is discretized [53]. The technical
challenge we face is to turn this bound into a guarantee against an adversary that can
mount a combined timing/algebraic attack. We identify unpredictability entropy [50]
as a suitable tool for this task. In particular, unpredictability entropy satisfies a chain
rule [58], which limits the extent to which bounded leakage can decrease the hardness
of a computational problem. We then cast Shoup’s lower bound for computing discrete
logs in generic groups [56] in terms of the unpredictability entropy w.r.t. an adversary
who can perform m group operations. Finally, we connect the leakage bound with
the bound for the discrete log to obtain the desired bound (in terms of n and m) for
combined side-channel/algebraic adversaries.

We put our approach to work in a case study where we seek to optimally configure
countermeasures against timing attacks in libgcrypt’s ElGamal implementation. Experi-
mentally, we identify optimal choices of key lengths and countermeasure configurations
that guarantee the same degree of security as a constant-time implementation using
a reference key length. We do this for realistic server configurations, and target com-
monly used key lengths. In the course of our experiments we observe that the time
of deployment of a key, or the number allowed connections per second can influence
which configuration is optimal: the defensive, constant-time implementation with a
short key, or the more aggressively tuned and leaky implementation with a longer key.

In summary, our contributions are conceptual and practical. Conceptually, we
combine game theory with novel, quantitative security guarantees to tackle the problem
of systematically choosing the optimal balance between security and performance.
Practically, we perform a case-study on a realistic ElGamal implementation, where
we illustrate how our techniques can be used to identify cost-effective countermeasure
configurations.

Organization In Section 3.2, we present the countermeasure configuration game,
based on parametric security guarantees. We instantiate these guarantees in Section 3.3,
before we discuss their application in Sections 3.4 and 3.5. We present related work in
Section 7.5, and conclude in Section 7.6.

22

Chapter 3. Rational Protection Against Timing Attacks

3.2 Choice of Optimal Protection
In this section we cast the optimal configuration of a countermeasure as a game between
the adversary and the defender. We conclude the section with a discussion of the effect
of using safe approximations of the security of a system (instead of exact values) for
the solution of the game.

3.2.1 Motivating Example
Input blinding is a widely deployed countermeasure against timing attacks on cryptosys-
tems based on modular exponentiation. A formal security analysis of input blinding [53]
shows that the amount of information about the key that is leaked by a blinded cryp-
tosystem is bounded from above by

(b − 1) log2(n + 1) (3.1)

bits, where b is the number of possible execution times, and n is the number of side-
channel measurements made.

For real systems, b can be as large as the difference between the worst-case execution
time and the best-case execution time (e.g., in clock ticks), in which case (3.1) does not
imply meaningful guarantees. However, b can be reduced by applying bucketing, which
is the discretization of system’s execution times into intervals (buckets) where, for each
execution time, one waits until the enclosing bucket’s upper bound before returning the
result of the computation.

Choosing a smaller number of buckets b leads to better security guarantees, but it
also leads to a decrease in performance. Likewise, picking a larger key size leads to
better security and a decrease in performance. The techniques presented in this chapter
enable identifying the sweet spot in the resulting parameter space.

3.2.2 Countermeasure Configuration as a Game
We formalize the configuration of a countermeasure as a two-stage game between
a defender (D) and an adversary (A). Similar games are known in the literature as
Stackelberg games [91]. In the first stage, D chooses an element d from a finite set
D of defender actions, which can be parameters of a protection mechanism. In the
second stage, having seen d, A responds by choosing an element of a finite set A of
adversary actions. We model this choice as a function r : D→ A, which captures that
the adversary knows and responds to d.

If a situation is preferred by a player, we say that it has a higher utility. Utilities are
captured in terms of real-valued functions of both player’s actions:

uD, uA : D × A→ R .

Putting together all ingredients, a two-stage game is the tuple G = [(D,A), (D, A), (uD, uA)].

23

CHAPTER 3. RATIONAL PROTECTION AGAINST TIMING ATTACKS

3.2.3 Utilities of the Players

Now we define the utilities that make up the countermeasure configuration game. For
this, we rely on (upper bounds on) the probability of a breach (i.e. a successful attack),
which we model as functions

p : D × A→ [0, 1] .

Throughout this section we leave p parametric; we show how to instantiate it in Sec-
tion 3.3.

Defender’s utility A natural notion for the defender’s utility is to consider the loss l
in case of a successful breach together with the cost of the defense d, i.e.,

− p(d, r(d)) · l − costD(d) . (3.2)

In practice, this definition suffers from two problems: First, in advance it may be
difficult to put a number l on the loss in case of breach. Second, the definition may give
misleading results when working with bounds on p, as we discuss in Section 3.2.5.

To address those problems, we impose a hard upper bound pmax on the probability
of breach, which is common practice, for example, in safety requirements [92]. We
then define the defender’s utility as the cost of defense under this constraint.

Definition 5. The defender’s utility uD is defined as

uD(d, r(d)) = −costD(d) ,

where we require p(d, r(d)) ≤ pmax.

Example 1. For the countermeasure described in Section 3.2.1, the defender’s action
is to choose a key length k and a number of buckets b, such that the adversary’s chance
of key recovery remains below pmax:

D = {(k, b) | p((k, b), r(k, b)) ≤ pmax} ,

where costD(k, b) is the average execution time of the corresponding implementation.
Here we instantiate p(·) using the bounds in Section 3.3. We rely on key length recom-
mendations [93] for protecting against traditional (non-side-channel) adversaries as a
basis for instantiating pmax. Specifically, the defender has to pick the key length k and
number of buckets b in such a way that the security level with side-channel matches
that of a reference key length kref without side-channel.

24

Chapter 3. Rational Protection Against Timing Attacks

Adversary’s utility A natural notion for the adversary’s utility is the adversary’s
expected benefits in terms of the gain g in case of a successful breach and the cost of
attack, i.e.,

p(d, r(d)) · g − costA(r(d)) .

In practice, however, it is more common to capture adversaries in terms of assump-
tions on their resources and capabilities [93]. We follow this approach and impose a
hard upper bound ∆ on the attacker’s resources. We then define the adversary’s utility
as the probability of breach under this constraint.

Definition 6. The adversary’s utility uA is defined as

uA(d, r(d)) = p(d, r(d)) ,

where we require costA(r(d)) ≤ ∆.

Example 2. In this chapter we consider as resource ∆ the time available to the ad-
versary for breaking the key (e.g., the key deployment time), which the adversary can
spend between sequentially making m side-channel measurements (each of which we
assume take time τon) and n search steps (each of which we assume take time τoff). The
adversary’s actions are hence

A = {(m, n) | mτoff + nτon ≤ ∆} .

Note that this definition of A also caters for parallel attacks by considering more general
notions of cost and resources, which we forgo for the sake of concreteness.

3.2.4 Solving the Game
We use the standard solution concept for multi-stage games for characterizing optimal
countermeasure configurations. Namely, we use subgame perfect equilibrium (see
e.g. [91]), which is a combination of strategies (d∗, r∗) of the two players such that none
of the players can obtain a higher payoff by deviating from the strategy, if the other
player sticks to their strategy.

Definition 7. A subgame perfect (Nash) equilibrium (SPE) of a game G = [(D,A), (D, A), (uD, uA)]
is a defender’s action d∗ and an adversary’s response function r∗, such that

(i) for all d ∈ D : uD(d, r∗(d)) ≤ uD(d∗, r∗(d∗)), and

(ii) for all r : uA(d∗, r(d∗)) ≤ uA(d∗, r∗(d∗)).

The SPEs of a game can be obtained by backward induction, which consists of
solving two optimization problems: First, we find the adversary’s response function
that gives an optimal response to each of the defender’s actions. Then, taking into
account the optimal response function, we find the optimal defense. The existence of an
equilibrium is guaranteed by the following theorem.

25

CHAPTER 3. RATIONAL PROTECTION AGAINST TIMING ATTACKS

Theorem 1 ([94,95,96]). A finite game of perfect information has a pure-strategy SPE.
This SPE can be computed in time O(|D| · |A|), under the assumption that uD and uA
can be evaluated in time O(1).

Here, finite refers to the number of players’ actions and number of stages in the game,
perfect information refers to the fact that the second player knows which action the first
player has done, and pure-strategy refers to the players’ strategies being deterministic.

3.2.5 Soundness of Solutions Based on Probability Bounds

The definition of the countermeasure configuration game, and hence its solution, rely on
the probability p of a breach. When solving the game for practical systems, we need to
resort to approximations of p. Specifically, in this chapter we work with upper bounds
p̂ on p, which we introduce in Section 3.3.

However, using upper bounds may lead to unsound decisions. For example, over-
approximating p by p̂ = 1 in the utility function defined in (3.2) may suggest not to
deploy any countermeasures. That is, the solution of the game based on p̂ will leave
the system vulnerable, while the solution based on p may command the deployment of
a countermeasure. We now show that the countermeasure configuration game yields
sound solutions when used with bounds on the probability of breach, in the sense that
one errs on the secure side when solving the game using p̂ instead of p.

For this, consider countermeasure configuration games G and Ĝ with uA(·) = p(·),
ûA(·) = p̂(·), and uD = ûD, such that Ĝ uses an over-approximation of the probability
of breach in the sense that p̂ ≥ p pointwise. The following proposition shows that if a
defender chooses an optimal defense strategy with respect to Ĝ, and uses it to play G,
the probability of breach will still be upper bounded by pmax.

Proposition 2. Let d∗, r∗ be a SPE of Ĝ. Then, for all r,

p(d∗, r(d∗)) ≤ pmax

Proof. For all adversary strategies r, we have

p(d∗, r(d∗))
(1)
≤ p̂(d∗, r(d∗))

(2)
≤ p̂(d∗, r∗(d∗)) ,

where (1) follows from p ≤ p̂; and (2) holds because r∗ = arg maxr p̂(d, r(d)), i.e.,
for each r, d, p̂(d, r(d)) ≤ p̂(d, r∗(d)). As d∗ is the defender’s optimal action in Ĝ,
p̂(d∗, r(d∗)) ≤ pmax, from which the assertion follows. �

Proposition 2 shows that the countermeasure configuration game leads to sound
solutions when used with bounds on the probability of breach, whereas we have seen
that the utility defined by (3.2) does not. We leave a general characterization of these
two kinds of utilities to future work.

26

Chapter 3. Rational Protection Against Timing Attacks

3.3 Bounds on the Probability of Key Recovery

3.3.1 Our Approach
In this section, we derive bounds for the probability of recovering the secret key of
a public-key cryptosystem in a combined timing/algebraic attack. Our bounds are
practical enough to justify the choice of a leaky, non-constant time implementation over
a defensive constant-time implementation for standard ElGamal in some settings, see
Section 3.5. We derive our bounds in the generic group model and under the assumption
that the cryptosystem is protected against timing attacks by an idealized form of input
blinding.

The starting point for our proof is the bound discussed in Section 3.2.1 of the amount
of information contained in n execution time measurements of a blinded implementation
of modular exponentiation. The technical challenge we face is to turn this bound into
a guarantee against an adversary that can mount a combined timing/algebraic attack:
Existing notions of leakage (e.g. [49, 63]) do not easily combine with the adversary
models used in cryptography, and cryptographic notions of security (e.g. [97]) do not
cater for this weak yet realistic leakage model.

We identify unpredictability entropy [50] as a suitable notion of entropy for ex-
tending leakage bounds to notions of hardness w.r.t. computational adversaries. Un-
predictability entropy is versatile enough to accommodate for different classes of
adversaries and it satisfies a chain rule, which provides an interface to the leakage
bounds. We give a definition of unpredictability entropy and the proof of its chain rule
in Section 2.1.

There are few facts known about the unpredictability entropy of computational
problems [55], nor are there generally accepted hardness assumptions.1 To compensate
for this lack, we cast Shoup’s lower bound for computing discrete logs in generic groups
in terms of the unpredictability entropy w.r.t. an adversary who can perform m group
operations. This step requires a slight adaptation of unpredictability entropy and the
chain rule to the generic group model. We then connect the leakage bounds with the
entropy bounds for the discrete log to obtain the desired bound (in terms of n and m)
for combined side-channel/algebraic adversaries.

3.3.2 Generic Algorithms for Computing Discrete Logarithms
A generic group algorithm is an algorithm that solves problems over groups by only
performing group operations and equality tests. That is, it does not make any use of the
specific representation of group elements. Generic algorithms are an attractive model
of computation for security because one can use them to establish lower bounds for
computational problems [56]; their disadvantage is that they may underrate the power
of real adversaries.

1It is known that RSA private keys have low unpredictability entropy because they can be efficiently
recovered if a small fraction of the key bits are known [98].

27

CHAPTER 3. RATIONAL PROTECTION AGAINST TIMING ATTACKS

We next introduce the notion of generic algorithms for computing discrete loga-
rithms in cyclic groups of order k, which are isomorphic to the additive group Zk. We
use the definition by Maurer [57].

Definition 8 (Generic algorithm in groups). A generic algorithm Am
G(X) over Zk is an

algorithm that can make m computation steps, each consisting of one query to a group
oracle G. The oracle has an internal state v0, v1, v2, . . . , vm, where v0 = x is initialized
with a secret sampled from a random variable X with ran(X) = Zk. The t-th query to
the oracle consists of one of the following two operations:

1. constant insertion: algorithm inputs c ∈ Zk,
oracle sets vt := c

2. variable addition: algorithm inputs i, j < t,
oracle sets vt := vi + v j (mod k)

The oracle then outputs the results of testing vt for equality with all other elements in
the internal state, i.e. (vt = vi)i∈{0,..,t−1} .

In this model, each vi can be represented as a polynomial vi = ax + b, where a
and b are known to the adversary. This is because each vi is derived from x and the
inserted constants by repeated addition. If vi = v j for vi = ax + b and v j = a′x + b′ with
(a, b) , (a′, b′), we say that there is a collision between vi and v j. For the special case of
a group of prime order q, a collision can be used for recovering x, because the equation
(a − a′)x + (b − b′) = 0 has a unique solution in Zq.

In m queries, an adversary can establish at most
(

m
2

)
equations of the form vi = v j,

each of which has a unique solution. The probability of hitting one of them when
sampling uniformly at random from Zk is upper-bounded by

(
m
2

)
/q. Note that collisions

are the only way for recovering x in this model, i.e. the bound holds for any generic
algorithm for extracting x from the oracle.

The bound extends to bounds for cyclic groups of arbitrary order k via the Chinese
remainder theorem.

Theorem 2 ([56, 57]). Let Am
G

be a generic algorithm over Zk, q the largest prime
factor of k, and X uniformly distributed. Then

P[Am
G(X) = X] ≤

m2

q
.

Next, we consider the definition of unpredictability entropy w.r.t. bounds on the
number of accesses to an oracle O(X) that receives as input the value of a random
variable X, see Section 2.1.

Example 3. Let p be prime, g a generator of Z∗p, and q the largest prime factor of p− 1.
The problem of computing the discrete logarithm x of gx has unpredictability entropy of
least log2

q
m2 for m calls to G. This is because the multiplicative group Z∗p is cyclic, and

hence isomorphic to the additive group Zp−1. Then Theorem 2 applies.

28

Chapter 3. Rational Protection Against Timing Attacks

3.3.3 Blinded Side-Channels
We briefly revisit the notion of leakage that captures timing side-channels of crypto-
graphic algorithms with input blinding and bucketing as a countermeasure, see Sec-
tion 3.2.1. The assumption is that the execution time depends only on the key (which
remains fixed over multiple executions) and the blinded message (which is chosen
randomly and independently in each execution). The model abstracts from potential
timing leaks through the blinding/unblinding operations and system state such as caches.

A blinded channel for X is a family of random variables {Ox}x∈ran(X), one for every
x, with shared range B = ran(Ox) of bounded size b = |B|. For a fixed secret x, making
n timing measurements corresponds to taking n independent samples from Ox. As the
samples are independent, their relative ordering does not contain information about x;
the information about x contained in these samples can hence be represented by the
type Yn of the sequence, i.e. the vector of relative frequencies [53]. The number of such
vectors (and hence the information about X contained in n timing measurements of a
blinded channel) is bounded as follows.

Theorem 3. | ran(Yn)| ≤ (n + 1)b−1

Theorem 3 yields an upper bound for the amount of information contained in
n timing measurements. It can be improved slightly using a more careful counting
argument [99], and more significantly by using the fact that timing observations are
not uniformly distributed but rather follow a multinomial distribution with b possible
outcomes. We opt for the simple bound of Theorem 3 because it is tight enough for our
purposes and has the advantage of a polynomial expression.

3.3.4 Bounds for Combined Adversaries
We now leverage the results presented in this section to derive bounds on the probability
of key recovery by a combined side-channel/algebraic attack. In particular, we use the
chain rule (Lemma 4) to combine the lower bounds for the unpredictability entropy
(Theorem 2 and Example 3) with the upper bounds on the leakage (Theorem 3) and
obtain the following result.

Theorem 4 (Generic algorithms with side-channels). Let Am
G

be an algorithm that can
make m calls to a group oracle and n measurements of a blinded channel. Then

P[Am
G(X)(Yn) = X] ≤

m2(n + 1)b−1

q
,

where parameters b and q denote the range of the blinded channel and the largest prime
divisor of the group order, respectively.

Our modeling captures the case in which the adversary first performs n timing
measurements and then performs m calls to the group oracle. However, the bounds we

29

CHAPTER 3. RATIONAL PROTECTION AGAINST TIMING ATTACKS

derive also hold for adversaries that can interleave timing measurements and oracle
queries. The reason for this is that the adversary cannot influence the timing measure-
ments, which is why nothing is gained by postponing a timing measurement until after
an oracle query.

3.4 Computing the Equilibrium

In this section we show how to solve the countermeasure configuration game for a
discrete logarithm based cryptosystem that is protected with blinding and bucketing.
As described in Section 3.2.4, a pure-strategy equilibrium of a generic two-stage game
can be computed by backward induction, that is, sequentially solving two optimization
problems. We describe both optimization problems below.

For this, we rely on notation introduced in Examples 1 and 2 and the bounds derived
in Section 3.3. For their connection, consider a cyclic group Z∗p, where p is prime and
q is the largest prime factor of p − 1, as in Example 3. We use the bit lengths (|p|, |q|)
to instantiate the abstract notion of key length k in Section 3.2. In particular, we use
(|p|, |q|) to describe desired properties of the modulus, but without referring to specific
p and q.

3.4.1 Adversary’s Optimization Problem

The adversary’s optimization problem is to find a response function r∗ that maps
defender actions to an adversary action that maximizes the utility uA = p(·). That
is, for a defender’s choice of key length k = (|p|, |q|) and bucketing b, we need to
compute the numbers m∗ and n∗ of offline and online steps, respectively, that maximize
p((k, b), (m, n)) subject to the resource constraint mτoff + nτon ≤ ∆.

For the solution, first observe that the adversary’s utility (the probability of breach)
is maximized when all resources ∆ are invested in the attack; thus we treat the resource
constraint as an equality, and use it to express m in the bound from Theorem 4:

p((k, b), (m, n)) ≤
1
τ2

off

(∆ − nτon)2(n + 1)b−1

2|q|
(3.3)

The case b = 1 corresponds to a constant-time implementation, which is why the
utility is maximized when time is spent on offline guessing rather than on online queries,
i.e., n∗ = 0 and m∗ = ∆/τoff .

The case b ≥ 2 corresponds to an implementation with timing leaks. We symboli-
cally compute the maximum utility by solving for n in ∂

∂n(·) = 0 applied to (3.3). This
yields the maximum utility at n∗ = (∆(b − 1) − 2τon)/((b + 1) · τon) and the adversary
response

r∗(k, b) = ((∆ − n∗τon)/τoff , n∗) .

30

Chapter 3. Rational Protection Against Timing Attacks

3.4.2 Defender’s Optimization Problem

The defender’s optimization problem is to identify the defense d∗ that maximizes the de-
fender’s utility −costD(d∗), where the adversary response r∗ is given. Technically, solv-
ing this problem requires computing a bucketing b∗ and a key length k∗ that minimize
the average execution time costD subject to the constraint p((k∗, b∗), r∗(k∗, b∗)) ≤ pmax.

Here we face the challenge that there are no analytical models describing costD as
a function of key length and number of buckets. Instead, we instantiate each value of
costD by empirical analysis of the corresponding implementation. We propose a simple
heuristic to guide the search and avoid the evaluation of costD on too many parameters.

Restricting the search space We instantiate pmax as the probability of breach within
time ∆ of a key of reference length kref by an adversary that has no access to timing
information. The rationale behind using such adversaries as a baseline is that we can
rely on standards such as key length recommendations [93] for justified parameter
values.

We then use (3.3) and the adversary’s response n∗ (as a function of (k, b)) to restrict
the parameter space to the (k, b) that satisfy:

(∆ − n∗τon)2(n∗ + 1)b−1

τ2
off

2|q|
≤

∆2

τ2
off

2|q|ref
= pmax (3.4)

Empirically finding the optimum The empirical evaluation of costD(k, b) of a real
implementation is expensive. To avoid evaluation on the entire parameter space defined
by (3.4) we use a simple heuristic based on a weak assumption about the implementation,
namely, that the average execution time grows with the length of the key.

With this, we explore the search space as follows. For pmax fixed and b = 1, 2, . . .
we define kb to be the smallest key that achieves security pmax, i.e.

kb = min{k | p((k, b), r∗(k, b)) ≤ pmax}

As the execution time grows with the key length we do not need to consider keys
beyond kb because they will have less utility to the defender. For b = 1, 2, . . . we
empirically determine the distribution of execution times of an implementation with
keys of length kb, compute the optimal bucket boundaries into b buckets using dynamic
programming [53], and define costD(kb, b) as the corresponding average execution time.

In theory, the number of buckets that need to be considered is upper bounded by
the number of possible execution times. In practice (see Section 3.5), the shape of
costD(kb, b) becomes apparent after inspection of small values, which allows identifying
(k∗, b∗).

31

CHAPTER 3. RATIONAL PROTECTION AGAINST TIMING ATTACKS

3.5 Case Study

In this section, we report on a case study where we identify the optimal configuration of
countermeasures against timing attacks on ElGamal decryption, following the approach
developed in Sections 3.2, 3.3, and 3.4.

3.5.1 Experimental Setup

We analyze the ElGamal implementation of libgcrypt 1.6.1, compiled with GCC 4.8.2
on Ubuntu 14.04. We measure execution time in terms of the number of executed
CPU instructions instead of real time, thereby abstracting from the influence of the
microarchitecture. We determine the distribution of execution times corresponding
to particular key lengths and countermeasure configurations by sampling the time for
decrypting 105 random ciphertexts with different keys. As a benchmarking tool, we rely
on the PAPI library [100].

3.5.2 ElGamal Implementation in Libgcrypt

In libgcrypt, ElGamal is implemented over the multiplicative group Z∗p. For deriving
bounds on the probability of breach using Theorem 4, we need to know the size of the
largest prime factor q of p − 1. In libgcrypt, lower bounds for q can be directly read
off the source code: the key-generation algorithm ensures that q has a bit-length of at
least qbits, which is chosen according to a pre-defined table (see Figure 3.1). The
secret exponent x is then taken of size qbits plus a safety margin, which results in
faster decryption2.

ElGamal decryption in libgcrypt is performed in three steps: modular exponentiation
(we chose the square-and-multiply option), inversion, and multiplication. Blinding
is not readily available in libgcrypt 1.6.1; we implement it relying on pre-computed
randomness (see, e.g., [1]), which adds the overhead of two multiplications to the
decryption time.

|p| 1024 1536 2048 2560 3072
qbits 165 198 255 249 269

Figure 3.1: Excerpt from “Wiener’s table”, used in libgcrypt for determining the
minimal bit-length qbits of p’s factors.

2In libgcrypt’s source code, this is explained vividly: “I don’t see a reason to have a x of about the
same size as the p. It should be sufficient to have one about the size of q or the later used k plus a large
safety margin. Decryption will be much faster with such an x.”

32

Chapter 3. Rational Protection Against Timing Attacks

3.5.3 Constant-Time ElGamal
We modify the libgcrypt source code to estimate the timing of a constant-time imple-
mentation of ElGamal. The modifications include always performing multiplication
in the square-and-multiply exponentiation (≈ 35% overhead), forcing multi-precision
integer comparison to always iterate over the entire numbers (≈ 60% overhead), as
well as performing dummy operations to even out the timing of conditional branches in
the routines for squaring, multiplication, and division (≈ 4% overhead). Additionally,
compiler optimizations were switched off (≈ 10% overhead). In total, the overhead of
the performed changes is ≈ 125 to 155%, depending on the modulus size.

To eliminate timing variations in modular inversion, we replace libgcrypt’s imple-
mentation with a straightforward application of Fermat’s little theorem (a−1 = ap−2

mod p), where we rely on the constant-time exponentiation. Because the slowdown
using this approach is significant compared to state-of-the-art algorithms for modular
inversion [101], for fairness of our analysis we use the Fermat-based inversion for both
constant-time and non-constant-time timing measurement.

3.5.4 Results
In our experiments we analyze the influence of the following parameters on the optimal
countermeasure configuration: reference modulus size |p|ref as specified by kref ; the
key deployment time ∆; the key generation algorithm; and the access rate ρacc = τ−1

on .
The latter parameter gives the number of accesses the adversary can make to timing
observations per second, and can be influenced e.g. by limiting the rate of server
requests, or by using denial-of-service preventions. In practice, the choice of a key
size affects decryption time, and thus also the timing of an offline step τoff . We avoid
explicit instantiation of τoff in dependence of the key size by over-approximating the
adversary’s capabilities, setting the value of τoff with a key of size k to be τoff with the
corresponding kref , which gives a sound solution according to Proposition 2.

3.5.4.1 Varying the Modulus Size

We first consider varying the modulus size of keys generated with the libgcrypt default
key generation algorithm, for fixed ∆ = 365 days and ρacc = 100 accesses per second.
As depicted in Figure 3.2, for modulus sizes |p|ref ∈ {1024, 1536}, the optimal defense
is to use a constant-time implementation, i.e., d∗ = (kref , 1). For bigger modulus sizes,
we obtain the optimum at a non-constant-time implementation with b = 2 buckets; the
corresponding optimal modulus sizes are depicted in Figure 3.2b.

3.5.4.2 Varying the Access Rate ρacc

Increasing the access rate ρacc gives the adversary more possibilities to collect timing
observations; thus, a defender deploying a non-constant time implementation needs to
increase the modulus size to compensate for this information loss. In Figure 3.3 we

33

CHAPTER 3. RATIONAL PROTECTION AGAINST TIMING ATTACKS

1024 1536 2048 2560 3072
0

2

4

6

8

10

12

14

16

18

1 bucket

2 buckets

reference modulus size

#
 in

st
ru

ct
io

n
s

×
1

0
8

(a) Average cost (in number of CPU instructions).
b
1 |p|ref 1024 1536 2048 2560 3072
2 |p| 1478 2087 2683 3323 3898

(b) Modulus sizes |p| (in bits) providing the same protection with 2-bucketing as modulus sizes
|p|ref with one bucket.

Figure 3.2: Varying the modulus sizes for default libgcrypt keys. The results are given
for ∆ = 365 days, ρacc = 100 accesses per second.

demonstrate that this can increase the cost of the non-constant time implementation
enough for the optimum to shift from b = 2 to b = 1, i.e., the defender will prefer a
constant-time implementation.

3.5.4.3 Varying the Key Deployment Time

Varying the deployment time has a similar effect as varying the access rate: an adversary
has more time to collect timing observations. For example, if the deployment time is
decreased, the defender’s preference may shift from a constant to a non-constant-time
implementation, as depicted in Figure 3.4.

3.5.4.4 Using a Safe Prime Modulus

An alternative approach for key generation makes sure that the group modulus p is
a safe prime, i.e., p = 2q + 1 for a prime q. For example, the pycrypto library uses
Algorithm 4.86 in [102] to generate p as a safe prime. As a result, q is guaranteed to
have a bit length of |p| − 1.

34

Chapter 3. Rational Protection Against Timing Attacks

1 250 500 750 1000
12

12.5

13

13.5

14

14.5

15

15.5

16

16.5

17

1 bucket

2 buckets

access rate

#
 in

st
ru

ct
io

n
s

×
10

8

Figure 3.3: Average cost (in number of CPU instructions) for varying access rate ρacc

(in accesses per second). The results are given for |p|ref = 3072 bit, ∆ = 365 days.

Figure 3.5 illustrates the effect of varying the bit-size of the safe prime p, for fixed
∆ = 365 days and ρacc = 100 accesses per second. A comparison with Figure 3.2 shows
that the benefits of using a non-constant time implementation are more substantial for
safe primes than for default libgcrypt keys. The reason is that, for the same bit-length,
safe primes provide more security in terms of Theorem 2, which is why the information
loss from side-channel observations in a non-constant time implementation can be
compensated by adding fewer bits to the key.

3.5.4.5 Varying the Number of Buckets

When increasing b, the defender has to increase the corresponding modulus size in
order to ensure that the desired security level is met; for this to be economically
feasible, the overhead from the bigger key needs to be compensated by savings from
the countermeasure. In all cases we consider, increasing b above 2 did not fulfill this
requirement, and thus all obtained optima were for b = 1 or b = 2. This is the case even
in cases where an increase in b requires only a small increase in |p|ref , as is the case
with safe primes (see Figure 3.6).

3.5.5 Use Cases

In the following we choose the parameters to reflect two example use cases. We set the
|p|ref = 2048, which is the default GnuPG setting.

As a first use case, we consider a proxy server that decrypts incoming emails. In

35

CHAPTER 3. RATIONAL PROTECTION AGAINST TIMING ATTACKS

1 14 30 60 120 180 240
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1 bucket

2 buckets

key deployment time

in

st
ru

ct
io

n
s

×
10

8

Figure 3.4: Average cost (in number of CPU instructions) for varying deployment time
∆ (in days). The results are given for |p|ref = 1024 bits, ρacc = 100 accesses per second.

this scenario, the access rate ρacc can be expected to be small (we set it to ρacc = 10),
while key deployment times can be expected to be higher. Figure 3.7 depicts that in
this scenario, even for very long periods of time, we obtain the optimum configuration
with the non-constant-time implementation (b = 2). Compared to the constant-time
implementation, the optimal configurations give savings between 23% and 30%.

As a second use case, we consider an Internet-facing server that handles user
requests. In this scenario, keys may have a shorter life-time, which we set to ∆ = 90
days; however, a higher access rate translates to a higher throughput, which may
be a critical goal. For this scenario, Figure 3.8 shows that the non-constant-time
implementation is the optimal solution even for large access rates; the expected savings
compared to the constant-time implementation are between 10% and 28%.

3.6 Related Work

The substantial body of work related to the developments in this chapter is covered in
Chapter 2. Below we clarify three additional points.

First, g-vulnerability [63] is a notion of entropy that accounts for general notions of
adversary’s gain. While it is possible to cast the generic discrete logarithm problem in
terms of a specific g-function (the adversary gains 1 with a collision and 0 otherwise),
we chose to rely on unpredictability entropy as a notion because it explicitly models
resource-bounded computation and hence provides a natural connection to a variety of
adversary models in cryptography.

36

Chapter 3. Rational Protection Against Timing Attacks

1024 1536 2048 2560 3072
0

5

10

15

20

25

30

1 bucket

2 buckets

reference modulus size

#
 in

st
ru

ct
io

n
s

×
1

0
8

(a) Average cost (in number of CPU instructions).
b
1 |p|ref 1024 1536 2048 2560 3072
2 |p| 1054 1566 2078 2590 3102

(b) Modulus sizes |p| (in bits) providing the same protection with 2-bucketing as modulus sizes
|p|ref with one bucket.

Figure 3.5: Varying the modulus sizes for safe primes. The results are given for ∆ = 365
days and ρacc = 100 accesses per second.

Second, Kiltz and Pietrzak [97] present a leakage-resilient variant of ElGamal, based
on multiplicative secret sharing. They consider a more general leakage model and prove
indistinguishability under chosen ciphertext attack (also in the generic group model),
whereas we only prove security against key recovery attacks. The advantage of aiming
for weaker guarantees is that they apply to standard ElGamal is that their simplicity
makes them easily applicable in a game-theoretic context.

Third, the connection of timing leakage of blinded implementations to cryptographic
security has been studied in [99], for asymptotic notions of security. In contrast, the
bounds we develop in this chapter are concrete, which is required for using them in the
context of the countermeasure configuration game.

3.7 Conclusions and Future Work
We have presented a systematic approach for determining the optimal protection against
timing attacks, where we make use of a number of simple but powerful tools from game
theory, information theory, and cryptography. The results we obtain are rigorous but

37

CHAPTER 3. RATIONAL PROTECTION AGAINST TIMING ATTACKS

0

2

4

6

8

10

12

buckets

in

st
ru

ct
io

n
s

×
1

0
8

1 2 3 4 5 6 7 8 9 10

(a) Average cost (in number of CPU instructions).
buckets 1 2 3 4 5 6

|p| 2048 2078 2109 2139 2170 2201

(b) Modulus sizes |p| (in bits) providing the same protection for varying number of buckets.

Figure 3.6: Varying the number of buckets, with safe prime modulus of reference size
|p|ref = 2048. The results are given for ρacc = 100 accesses per second and time of
deployment ∆ = 365 days.

practical enough to justify the use of a fast but leaky implementation of ElGamal over a
defensive constant-time implementation.

38

Chapter 3. Rational Protection Against Timing Attacks

1 year 4 year 7 years 10 years 13 years
3

3.5

4

4.5

5

5.5

6

6.5

7

1 bucket

2 buckets

key deployment time

#
 in

st
ru

ct
io

n
s

×
10

8

Figure 3.7: Average cost (in number of CPU instructions) for varying deployment time
∆. The results are given for |p|ref = 2048 bit, ρacc = 10 accesses per second.

100 500 1000 5000 10000 50000
4

4.5

5

5.5

6

6.5

7

1 bucket

2 buckets

access rate

#
 in

st
ru

ct
io

n
s

×
10

8

Figure 3.8: Average cost (in number of CPU instructions) for varying access rate ρacc

(in accesses per second). The results are given for |p|ref = 2048 bit, ∆ = 90 days.

39

CHAPTER 3. RATIONAL PROTECTION AGAINST TIMING ATTACKS

40

Part II

Cache Attack Protection

41

The second part of this thesis presents CacheAudit, a versatile framework for the
automatic, static analysis of cache side-channels. CacheAudit takes as input a program
binary and a cache configuration, and derives formal, quantitative security guarantees
for a comprehensive set of side-channel adversaries. Our technical contributions include
novel abstractions to efficiently compute precise overapproximations of the possible
side-channel observations for each of these adversaries. These approximations then
yield upper bounds on the amount of information that is revealed.

The work presented in this part is the first tool for automatic quantification of
cache leaks from practical implementations, and addresses research question 2 (Q2) in
Section 1.2. The exposition of this part is organized in three chapters. Chapter 4 provides
the necessary background on caches, static analysis, and quantifying side-channel leaks.
Our main contributions are presented in Chapter 5 and Chapter 6.

In Chapter 5, we introduce CacheAudit and the novel abstract domains on which
it is based. In this chapter we address adversaries who can observe the final cache
states, traces of cache hits and misses, and the total execution time of programs. In
case studies we apply CacheAudit to binary executables of algorithms for sorting and
encryption, including the AES implementation from the PolarSSL library, and the
reference implementations of the finalists of the eSTREAM stream cipher competition.

In Chapter 6, we address stronger adversaries who can observe traces of memory
addresses and memory blocks, and enable reasoning about pointer arithmetic in dynamic
memory. We achieve this by devising novel techniques that provide support for bit-level
and arithmetic reasoning about unknown memory locations. These techniques enable
us to perform the first rigorous analysis of widely deployed software countermeasures
against cache attacks on modular exponentiation, based on executable code.

43

44

4
Static Analysis of Cache Side-Channels

4.1 Caches and Programs
We begin with a primer on caches, where we also define terminology. We then develop
a program semantics that includes cache behavior, and we show how it can be used as a
basis for quantifying the amount of information leaked by cache side-channels.

4.1.1 A Primer on Caches
Caches are fast but small memories that store a subset of the main memory’s contents
to bridge the latency gap between the CPU and main memory. To profit from spatial
locality and to reduce management overhead, main memory is logically partitioned into
a set of memory blocks B. Each block is cached as a whole in a cache line of the same
size. Upon a memory access, if the accessed memory block is located in the cache, a
cache hit occurs; otherwise, a cache miss occurs.

Caches are usually partitioned into equally-sized cache sets S, and the size k of
a cache is called the associativity of the cache. Caches with k > 1 are called k-way
set-associative, and caches with k = 1 are called directly-mapped. Each block is only
stored in the lines of one set, and we denote the mapping between blocks and sets as the
function set : B → S. A cache set is identified by the set index; blocks within a cache
set are identified by the tag; bytes within a block are identified by the offset. Usually,
the tag, set index, and offset, are determined either from bits of the physical, or of the
virtual memory addresses, as e.g. shown in Figure 4.1.

Figure 4.1: An example split of a 32-bit memory address into tag, index, and offset, for
a physically indexed and tagged, 32KB, 8-way set associative cache, with 64-byte lines.

Since the cache is much smaller than main memory, a replacement policy must

45

CHAPTER 4. STATIC ANALYSIS OF CACHE SIDE-CHANNELS

decide which memory block to replace upon a cache miss. Usually, replacement policies
treat sets independently, so that accesses to one set do not influence replacement deci-
sions in other sets. Well-known replacement policies in this class are least-recently used
(LRU), used in various Freescale processors such as the MPC603E and the TriCore17xx;
pseudo-LRU (PLRU), a cost-efficient variant of LRU, used in the Freescale MPC750
family and multiple Intel microarchitectures; and first-in first-out (FIFO), also known
as Round Robin, used in several ARM and Freescale processors such as the ARM922
and the Freescale MPC7450 family. A more comprehensive overview can be found
in [103].

4.1.2 Programs and Computations

We introduce an abstract notion of programs and computations, which we then refine to
capture cache behavior. Namely, a program P = (Σ, I, F,E,T) consists of the following
components:

• Σ - a set of states

• I ⊆ Σ - a set of initial states

• F ⊆ Σ - a set of final states

• E - a set of events

• T ⊆ Σ × E × Σ - a transition relation

A computation of P is an alternating sequence of states and events σ0e0σ1e1 . . . σn

such that σ0 ∈ I and that for all i ∈ {0, . . . , n − 1}, (σi, ei, σi+1) ∈ T . The set of all
computations of P is its trace collecting semantics Col(P) ⊆ Traces, where Traces
denotes the set of all alternating sequences of states and events. When considering
terminating programs, the trace collecting semantics can be formally defined as the
least fixpoint of the next operator containing I:

Col(P) = I ∪ next(I) ∪ next2(I) ∪ . . . ,

where next : Traces→ Traces describes the effect of one computation step:

next(S) = {t.σnenσn+1 | t.σn ∈ S ∧ (σn, en, σn+1) ∈ T }

In the rest of the chapter, we assume that P is fixed and abbreviate its trace collecting
semantics by Col.

46

Chapter 4. Static Analysis of Cache Side-Channels

4.1.3 Cache Updates and Cache Effects
For reasoning about cache side-channels, we consider a semantics in which the cache is
part of the program state. Namely, the program state consists of logical memories in
M (representing the values of main memory locations and CPU registers, including the
program counter) and a cache state in C, i.e., Σ =M×C.

The memory update updM is a function updM : M→M that is determined solely
by the instruction set semantics. The memory update has effects on the cache that
are described by a function effM : M→ EM, which we call memory effect. In the
setting of this thesis, effM determines the sequence of memory accesses e ∈ A∗ issued
during the update, i.e., EM = A∗, which includes the addresses accessed when fetching
instructions from the code segment, as well as the addresses containing accessed data.
The memory effect determines which blocks are loaded into cache, for which we define
the function block : A∗→B∗ mapping addresses to the corresponding blocks.

We model the cache state as a function that assigns an age in {0, . . . , k − 1, k} to
every memory block, where the age determines the order in which blocks are evicted.
Here, we require that no two blocks that reside in the same cache set have the same age,
and we represent blocks that are not cached using age k. Formally:

C := {c ∈ B → A | ∀a, b ∈ B : a , b⇒
((set(a) = set(b))⇒ (c(a) , c(b) ∨ c(a) = c(b) = k))}

Note that C includes states that cannot occur under some replacement policies: For
example, under LRU and FIFO, a block of age a ∈ {1, . . . , k − 1} is always preceded by
a block of age a − 1.

The cache update is a function updC : C × B → C, and it works as follows. Upon a
cache miss, a block is loaded from main memory into a cache set, where it gets assigned
age 0. The ages of the other memory blocks in this cache set are incremented by one. In
particular, this means that a block of age k − 1 is evicted from the cache. Upon a cache
hit to a block of age a ∈ {0, . . . , k− 1}, the ages of the blocks in the same set are updated
by applying a permutation Πa : A→ A, which is determined by the replacement policy.
We first give a formalization of the cache update in which the replacement policy is
kept parametric, before we define concrete permutations describing LRU, FIFO, and
PLRU replacement in Section 4.1.4:

updC(c, b) := λb′ ∈ B.

c(b′) : set(b′) , set(b)

c(b′) : set(b′) = set(b) ∧ b′ , b ∧ c(b′) = k

0 : set(b′) = set(b) ∧ b′ = b ∧ c(b) = k

c(b′) + 1 : set(b′) = set(b) ∧ b′ , b ∧ c(b′) < k ∧ c(b) = k

Πc(b)(c(b′)) : set(b′) = set(b) ∧ c(b′) < k ∧ c(b) < k

Each cache update results in a cache hit or a cache miss, which we formally capture in

47

CHAPTER 4. STATIC ANALYSIS OF CACHE SIDE-CHANNELS

terms of a function cache effect eff C : C × B → E:

eff C(c, b) :=

hit : c(b) < k

miss : otherwise

To capture cases where no memory access occurs, or where multiple accesses occur, to
the set of events is defined as E = {hit,miss}∗.

With this, we can now connect the components and obtain the global transition
relation T ⊆ Σ × E × Σ by

T = {((m1, c1), e , (m2, c2)) | m2 = updM(m1) ∧ c2 = upd∗C(c1, (block)(effM(m1)))
∧ e = eff ∗C(c1, (block)(effM(m1)))} ,

which formally captures the asymmetric relationship between caches, logical memories,
and events. Here, upd∗C denotes the repeated application of updC on a sequence of
blocks, which returns the cache state after the sequence of accesses; eff ∗C denotes the
repeated application of eff C on a sequence of blocks, which returns the sequence of
cache effects caused by the sequence of accesses.

4.1.4 Replacement Policies Defined by Permutations
Upon a cache hit, the different replacement policies update the ages of blocks within
a cache set according to different permutations. In the following, we define these
permutations for the FIFO, LRU, and PLRU replacement policies.

The FIFO replacement policy does not change the ages of the blocks upon cache
hits. Its is thus readily modeled as the identity permutation.

ΠFIFO
a (a′) = a′

The LRU replacement policy sets the age of an accessed block to 0 upon a cache
hit, making sure that always the least-recently used blocks get evicted. Formally, we
cast this behavior as

ΠLRU
a (a′) =

0 : a′ = a

a′ + 1 : a′ < a

a′ : a′ > a

The operation of the PLRU replacement policy, which is a cost-efficient approxima-
tion to LRU, requires a more detailed explanation. For an associativity that is a power
of two (the case considered in this chapter), PLRU represents each cache set as a full
binary tree storing the blocks at its leaves, and each non-leaf stores a bit that represents
an arrow pointing to one of the children. Upon a cache miss, the block to be evicted
is determined by following the arrows starting from the root. Upon any cache access
(regardless whether it is a hit or a miss), the arrows on the way to the accessed block are

48

Chapter 4. Static Analysis of Cache Side-Channels

block

age

a b c d

01 23

a b c d

21 03

a b c d

30 12

access 'c' access 'b'

Figure 4.2: An example of two consecutive cache hits with PLRU.

flipped. Figure 4.2 shows an example of two consecutive cache hits in a 4-way cache.
This construction ensures that upon consecutive cache misses, all cached blocks will
be evicted in an order depending on the current settings of the arrows, which allows
casting the effect of cache hits as a permutation of the ages. We formally define this
PLRU permutation policy ΠPLRU as

ΠPLRU
a (a′) =

0 : a′ = a

a′ : a even ∧ a′ odd

a′ + 1 : a odd ∧ a′ even

2 · ΠPLRU
ba/2c (ba′/2c) : otherwise

The intuition behind this formalization is presented in the following. The case distinction
in the definition of ΠPLRU stems from the observation that in the PLRU binary tree, all
blocks stored in the subtree to which the arrow at the root points (the odd subtree) have
an odd age, and the remaining blocks (in the even subtree) have an even age. In the
second and the third case in the definition of ΠPLRU, we update the age of blocks that
are in a different subtree than the accessed block. If the accessed block is from the even
subtree (the second case), then the arrow at the root is not flipped, and all the blocks in
the odd subtree retain their ages; if the accessed block is from the odd subtree (the third
case), the arrow at the root is flipped, which increases the age of all blocks in the even
subtree by one. For the blocks in the same subtree as the accessed blocks (the fourth
case), the relative order of the ages of those blocks is the same as the order of ages of
those blocks if only the subtree is considered as a (twice-smaller) cache set; the new
ages are twice the ages in the smaller cache set as only every second evicted block in
the actual cache is going to be from this subtree.

49

CHAPTER 4. STATIC ANALYSIS OF CACHE SIDE-CHANNELS

4.2 Side-Channels
We now define side-channels corresponding to access-based, trace-based, and timing-
based side-channel adversaries. For the access-based adversaries, we restrict the presen-
tation to synchronous adversary models, i.e. those that can control and observe the cache
state before and after, but not during, the execution of the victim program. A description
of CacheAudit’s support for concurrent, asynchronous access-based adversaries as
in [104] can be found in [84].

For a deterministic, terminating program P, the transition relation is a function, and
the program can be modeled as a mapping P : I → Col. We model an adversary’s view
on the computations of P as a function view : Col → O that maps computations to a
finite set of observations O. The composition

C = (view ◦ P) : I → O

defines a function from initial states to observations, which we call a channel of P.
Whenever view is determined by the cache and event components of traces, we call C a
side-channel of P.

Quantification of Side-Channels
We characterize the security of a channel C : I → O as the difficulty of guessing the
secret input from the channel output.

Formally, we model the choice of a secret input by a random variable X with
ran(X) ⊆ I and the corresponding observation by a random variable C(X) (or just C)
with ran(C) ⊆ O. Here ran(·) denotes the range of the respective random variable. We
model the adversary as another random variable X̂. The goal of the adversary is to
estimate the value of X, i.e. it is successful if X̂ = X.

Consider first the special case where the adversary does not have access to the
side-channel information, but knows the distribution of X. A straightforward upper
bound for the probability of correctly guessing the value of X in one shot is given by
the probability of the most likely value, where equality can be achieved:

P(X̂ = X) ≤ max
σ∈I

P(X = σ) . (4.1)

Consider now the case where the adversary can observe C, and where moreover
this is the only information he has about X. We formalize this as the requirement that
X → C → X̂ form a Markov chain, which means that X and X̂ do not share information
beyond what is contained in C or, more technically, is equivalent to requiring that X
and X̂ are statistically independent when conditioned on C. The following theorem
expresses a security guarantee as an upper bound on the adversary’s success probability
in terms of the size of the range of C.

Theorem 5. Let X → C → X̂ be a Markov chain. Then

P(X = X̂) ≤ max
σ∈I

P(X = σ) · |ran(C)|

50

Chapter 4. Static Analysis of Cache Side-Channels

Proof.

P(X = X̂) =
∑
σ,o

P(X = X̂ = σ | C = o)P(C = o)

(I)
=

∑
o

P(C = o)
∑
σ

P(X = σ|C = o)P(X̂ = σ|C = o)

≤
∑

o

P(C = o) max
σ

P(X = σ|C = o) (4.2)

(II)
=

∑
o

max
σ

P(X = σ)P(C = o|X = σ)

(III)
≤ max

σ
P(X = σ)

∑
o

max
σ

P(C = o|X = σ) (4.3)

≤ max
σ

P(X = σ) |ran(C)|

where (I) is due to the conditional independence of X and X̂ (i.e. the Markov property).
Equality (II) follows directly from Bayes’ theorem. Inequality (III) is an equality in
the case of uniformly distributed X, and the final step follows from the fact that each of
the summands is less than or equal to 1. �

A comparison of Equation (4.1) and Theorem 5 shows that the size of the range of
C is an upper bound on the factor by which the probability of correct guessing increases
when the adversary sees the output of the side-channel C(X) and is, in that sense, an
upper bound for the amount of information leaked by C. We will often give bounds on
|ran(C)| on a log-scale, in which case they represent upper bounds on the number of
leaked bits. Notice that the guarantees of Theorem 5 fundamentally rely on assumptions
about the initial distribution of X: if X is easy to guess to begin with, Theorem 5 does
not imply meaningful security guarantees.

For a formal connection to traditional (entropy-based) presentations of quantitative
information-flow analysis, observe that the negative logarithm of (4.1) is the min-entropy
H(X) of X. Likewise the negative logarithm of (4.2) is the conditional min-entropy
H(X|C) of X given C (see [49, 105] for definitions), i.e., (4.2) corresponds to 2−H(X|C).
The logarithm of the factor by which the terms in (4.1) and Theorem 5 differ is a
well-known upper bound for H(X) − H(X|C), that is, for the reduction in uncertainty
about X when one learns the output of the channel C e.g. [62, 99].

4.3 Automatic Quantification of Cache Side-Channels
Theorem 5 enables the quantification of side-channels by determining their range. As
channels are defined in terms of views on computations, their range can be determined
by computing Col and applying view. However, this entails computing a fixpoint of the
next operator and is practically infeasible in most cases. Abstract interpretation [106]
overcomes this fundamental problem by computing a fixpoint with respect to an effi-
ciently computable over-approximation of next. This new fixpoint represents a superset

51

CHAPTER 4. STATIC ANALYSIS OF CACHE SIDE-CHANNELS

of all computations, which is sufficient for deriving an upper bound on the range of the
channel and thus on the leaked information.

In this section, we describe the interplay of the abstractions used for over-approximating
next in CacheAudit (namely, those for memory, cache, and events), and we explain how
the global soundness of CacheAudit can be established from local soundness conditions.
This modularity is key for the future extension of CacheAudit using more advanced
abstractions. Our results hold for all adversaries introduced in Section 4.2 and we omit
the superscript adv from channels and views for readability.

4.3.1 Sound Abstraction of Leakage
We frame a static analysis by defining a set of abstract elements Traces] together with
an abstract transfer function next] : Traces]→Traces]. Here, the elements a ∈ Traces]

represent subsets of Traces, which is formalized by a concretization function

γ : Traces]→P(Traces) .

The key requirements for next] are (a) that it be efficiently computable, and (b) that it
over-approximates the effect of next on sets of computations, which is formalized as
the following local soundness condition:

∀a ∈ Traces] : next (γ(a)) ⊆ γ(next](a)) . (4.4)

Intuitively, if we maintain a superset of the set of computations during each step of the
transfer function as in (4.4), then this inclusion must also hold for the corresponding
fixpoints. More formally, any post-fixpoint of next] that is greater than an abstraction
of the initial states I is a sound over-approximation of the collecting semantics, which
is a central result from [106]. We use Col] to denote any such post-fixpoint.

Theorem 6 (Local soundness implies global soundness). If local soundness holds,
formalized by Equation (4.4), then

Col ⊆ γ
(
Col]

)
.

The following theorem is an immediate consequence of Theorem 6 and the fact that
view (Col) = ran(C). It states that a sound abstract analysis can be used for deriving
bounds on the size of the range of a channel.

Theorem 7 (Upper bounds on leakage).

|ran(C)| ≤
∣∣∣∣view

(
γ
(
Col]

))∣∣∣∣ .
With the help of Theorem 5, these bounds immediately translate into security

guarantees. The relationship of all steps leading to these guarantees is depicted in
Figure 4.3.

52

Chapter 4. Static Analysis of Cache Side-Channels

Col γ
(
Col]

)
Col]

Meaning
⊆

Theorem 6

|ran(C)| = |view (Col)|
∣∣∣∣view

(
γ
(
Col]

))∣∣∣∣≤
Monotonicity

Leakage ≤
Theorem 5

Figure 4.3: Relationship of collecting semantics Col, abstract fixpoint Col], side-
channels C, and leakage bounds.

4.3.2 Abstraction Using a Control Flow Graph
In order to come up with a tractable and modular analysis, we design independent
abstractions for cache states, memory, and sequences of events.

• M] abstracts memory and γM :M]→P(M) formalizes its meaning.

• C] abstracts cache configurations and γC : C]→P(C) formalizes its meaning.

• E] abstracts sequences of events and γE : E]→P(E∗) formalizes its meaning.

However, since cache updates and events depend on memory state, independent analyses
would be too imprecise. In order to maintain some of the relations, we link the three
abstract domains for memory state, caches, and events through a finite set of labels L so
that our abstract domain is

Traces] : L→M] × C] × E] ,

where we write aM(l), aC(l) and aE(l) for the first, second, and third components of an
abstract element a(l).

Labels roughly correspond to nodes in a control flow graph in classical data-flow
analyses. One could simply use program locations as labels. But in our setting, we
use more general labels, allowing for a more fine-grained analysis in which we can
distinguish values of flags or results of previous tests [107]. To capture that, we associate
a meaning with each label via a function γL : L→P(Traces). If the labels are program
locations, then γL(l) is the set of traces ending in a state in location l. The analogy with
control flow graphs can be extended to edges of that graph: using the next operator, we
define the successors and predecessors, respectively, of a location l as follows:

succ(l) = {k | next(γL(l)) ∩ γL(k) , ∅}
pred(l) = {k | next(γL(k)) ∩ γL(l) , ∅}

With this we can describe the meaning of an abstract element a ∈ Traces] by:

γ(a) = {σ0e0σ1 . . . σn ∈ Traces | ∀i ≤ n, ∀l ∈ L : σ0e0σ1 . . . σi ∈ γL(l)⇒

σMi ∈ γM(aM(l)) ∧ σCi ∈ γC(aC(l)) ∧e0 . . . ei−1 ∈ γE(aE(l))
}

(4.5)

53

CHAPTER 4. STATIC ANALYSIS OF CACHE SIDE-CHANNELS

That is, the meaning of an a ∈ Traces] is the set of traces, such that for every prefix of
a trace, if it “ends” at program location l, then the memory state, cache state, and the
event sequence satisfy the respective abstract elements for that location.

The abstract transfer function next] will be decomposed into:

next](a) = λl.
(
nextM](a, l), nextC](a, l), nextE](a, l)

)
, (4.6)

where each next function over-approximates the corresponding concrete update function
defined in the previous section. The effects used for defining the concrete updates are
reflected as information flow between otherwise independent abstract domains, which
is formalized as a partial reduction in the abstract interpretation literature [108].

4.3.3 Local Soundness
The products and powers of sound abstract domains with partial reductions are again
sound abstract domains [109]. The soundness of Traces] hence immediately follows
from the local soundness of the memory, cache and event domains. Below we describe
those soundness conditions for each domain.

The abstract next] operation is implemented using local update functions for the
memory, cache, and event components. For the memory domain we have, for each label
k ∈ L and each l ∈ succ(k):

• an abstract memory update updM],(k,l):M]→M], and

• an abstract memory effect effM],(k,l) :M]→P(EM).

For the cache domain, there is no need for separate functions for each pair (k, l), because
the cache update only depends on the accessed block, which is delivered by the abstract
memory effect. Likewise, the update of the event domain only depends on the abstract
cache effect. Thus, we further have:

• an abstract cache update updC] : C] × P(EM)→C],

• an abstract cache effect eff C] : C] × P(EM)→P(E), and

• an abstract event updE] : E] × P(E)→E].

With these functions, we can approximate the effect of next on each label l, using
the abstract values associated with the labels that can lead to l, pred(l). For the example
of the cache domain, this yields

nextC](a, l) =

C]⊔
k∈pred(l)

updC]
(
aC(k), block(effM],(k,l)(a

M(k)))
)
,

where
⊔C] refers to the join function and can be thought of as set union, and block

is naturally lifted to sets. That is, nextC](a, l) collects all cache states that can reach l

54

Chapter 4. Static Analysis of Cache Side-Channels

within one transition when updated with an over-approximation of the corresponding
memory blocks.

Now from Equations 4.4, 4.5, and 4.6, we can derive conditions for each domain
that are sufficient to guarantee local soundness for the whole analysis:

Definition 9 (Local soundness of abstract domains). The abstract domains are locally
sound if the abstract joins are over-approximations of unions, and if for any function
f] ∈ {updM],(k,l), effM],(k,l), updC] , eff C] , updE]} approximating concrete function f ∈
{updM, effM, updC, eff C, next} and corresponding meaning function γ f , we have for any
abstract value x:

γ f

(
f](x)

)
⊇ f

(
γ f (x)

)
.

For example, for the cache abstract domain, we have the following local soundness
conditions:

∀c] ∈ C],M ∈ P(B) : γC(updC](c
],M)) ⊇ updC(γC(c]),M),

eff C](c
],M) ⊇ eff C(γC(c]),M),

∀G] ⊆ C] : γC

 C
]⊔
G]

 ⊇ ⋃
G]∈G]

γC
(
G]

)
.

Lemma 5 (Local Soundness Conditions). If local soundness holds on the abstract
memory, cache, and events domains, then the corresponding next] function satisfies
local soundness.

Due to the above lemma, abstract domains for the memory, cache, and events can
be separately developed and proven correct. We exploit this fact in this chapter, and
we plan to develop further abstractions in the future, targeting different classes of
adversaries, more hardware features, or improving precision.

4.3.4 Soundness of Delivered Bounds

We implemented the framework described above in a tool named CacheAudit, which
we describe in Chapter 5. We define a number view-functions, which capture adver-
saries with different observational capabilities: adversaries, who can observe the final
cache state, the final timing, or a trace of cache hits and misses (see Chapter 5), as
well as adversaries who can observe traces of accessed addresses or memory blocks
(see Chapter 6). Thanks to the previous results, CacheAudit provides the following
guarantees.

Theorem 8. The bounds derived by CacheAudit soundly over-approximate |ran(C)|,
defined using the respective view-functions, and hence correspond to upper bounds on
the maximal amount of leaked information.

55

CHAPTER 4. STATIC ANALYSIS OF CACHE SIDE-CHANNELS

The statement is an immediate consequence of combining Lemma 5 with Theo-
rems 6 and 7, under the assumption that all involved abstract domains satisfy local
soundness conditions, and that the corresponding counting procedures are correct. For
the novel abstract domains we introduce (see Section 5.5, Section 6.4, and Section 6.5),
we include justification of this assumption. For the other domains, corresponding proofs
are either standard (e.g. the value domain), or out of scope of this thesis.

56

5
CacheAudit: A Tool for the Static Analysis of

Cache Side-Channels

5.1 Introduction

Processor caches are a particularly rich source of side-channels because their behavior
can be monitored in various ways. This is demonstrated by three documented classes of
side-channel attacks:

1. In time-based attacks [1, 9] the adversary monitors the overall execution time of
a victim, which is correlated with the number of cache hits and misses during
execution. Time-based attacks are especially daunting because they can be carried
out remotely over the network [12].

2. In access-based attacks [10, 11, 104] the adversary probes the victim’s cache
state by timing its own accesses to memory. Access-based attacks require the
adversary and the victim to share the same hardware platform, which is common
in the cloud and has already been exploited [13, 110].

3. In trace-based attacks [111] the adversary monitors the sequence of cache hits and
misses. This can be achieved, e.g., by monitoring the CPU’s power consumption
and is particularly relevant to embedded systems.

A number of proposals have been made for countering cache-based side-channel attacks.
Some proposals focus entirely on modifications of the hardware platform; they either
solve the problem for specific algorithms such as AES [112], or require modifications to
the platform [25] that are so significant that their rapid adoption seems unlikely. The bulk
of proposals rely on controlling the interactions between the software and the hardware
layers, either through the operating system [104, 113], the client application [9, 11, 114],
or both [22, 115]. Reasoning about these interactions can be tricky and error-prone
because it relies on the specifics of the binary code and the microarchitecture.

57

CHAPTER 5. CACHEAUDIT: A TOOL FOR THE STATIC ANALYSIS OF CACHE
SIDE-CHANNELS

Our approach In this chapter we present CacheAudit, a tool for the automatic, static
exploration of the interactions of a program with the cache. CacheAudit takes as input
a program binary and a cache configuration and delivers formal security guarantees
that cover all possible executions of the corresponding system. The security guarantees
are quantitative upper bounds on the amount of information that is contained in the
side-channel observations of timing-, access-, and trace-based adversaries, respectively.
CacheAudit can be used to formally analyze the effect on the leakage of software
countermeasures and cache configurations, such as preloading of lookup tables or
increasing the cache’s line size. The design of CacheAudit is modular and facilitates
extension with any cache model for which efficient abstractions are in place.

We demonstrate the scope of CacheAudit in case studies where we analyze the
side-channel leakage of implementations of representative algorithms for symmetric
encryption and sorting. We highlight the following results:

• For the PolarSSL implementation of AES, CacheAudit confirms that preloading
of tables significantly improves the security of the executable: for most adversary
models and replacement policies, we can in fact prove non-leakage of the exe-
cutable, whenever the tables fit entirely in the cache. However, for access-based
adversaries and LRU and PLRU caches, CacheAudit reports small, non-zero
bounds. And indeed, with LRU and PLRU (in contrast to, e.g., FIFO), the or-
dering of blocks within a cache set reveals information about the victim’s final
memory accesses.

• An analysis of the software implementations of the four finalists of the eSTREAM
competition [116] yields the following results: the stream ciphers without lookup
tables (Rabbit and Salsa20) are secure against all kinds of cache attacks. In
particular, CacheAudit can formally establish leakage bounds of zero, on the
basis of the binary executable of the reference implementations, for all adversary
models and replacement policies. For HC-128, which employs dynamically up-
dated tables, CacheAudit can establish leakage bounds of zero for some adversary
models, whenever the tables fit entirely into the cache. This is explained by the
regularity of the memory accesses of the dynamic updates, which ensure that the
entire table is cached. Indeed, the leakage bounds we obtain strikingly resemble
those obtained for AES with preloading. For Sosemanuk, the memory accesses do
not exhibit such regularity and, indeed, CacheAudit consistently derives non-zero
bounds.

Together, these results show how CacheAudit can help with extracting useful informa-
tion about the security of the interactions of binary executables with the underlying
cache architecture.

Technical contributions On a technical level, our work builds on the fact that the
amount of leaked information corresponds to the cardinality of the set of possible
side-channel observations (that is, the size of the range of the side-channel). This

58

Chapter 5. CacheAudit: A Tool for the Static Analysis of Cache Side-Channels

set can be over-approximated by abstract interpretation, which is a theory of sound
approximation of program semantics [106], and its cardinality can be determined by
counting techniques [41]. We elaborate on the formal aspects of analyzing cache
side-channels through abstract interpretation in Chapter 4.

To realize CacheAudit based on this insight, we propose three novel abstract domains
(that is, data structures that approximate properties of the program semantics) that keep
track of the observations of access-based, time-based, and trace-based adversaries,
respectively. Moreover, we present counting algorithms that determine the cardinality
of the set of observations represented by the abstract states of each of these domains. In
particular:

1. We propose an abstract domain that tracks information about the possible cache
states, which are represented in terms of the memory blocks that may reside
in the cache. We further propose an algorithm that counts the cache states that
are represented by an abstract state. The domain and counting procedure are
both parametric in the cache update policy, which is described by a permuta-
tion [117]. In contrast to existing abstract domains used in worst-case execution
time analysis [103, 118] and their counting procedures [66], our novel domain
provides increased precision and it enables the abstraction of a large class of
update policies in a uniform and simple manner.

2. We propose an abstract domain that tracks the traces of cache hits and misses
that may occur during execution. We use a technique based on prefix trees and
hash consing to compactly represent such a set of traces, and to determine its
cardinality.

3. We propose an abstract domain that tracks the possible execution times of a
program. This domain captures timing variations due to control flow and caches
by associating hits and misses with their respective latencies and adding the
execution time of the respective commands.

We formalize these domains in an abstract interpretation framework that captures
the relationship between microarchitectural state and program code. We use this
framework to establish the correctness of the derived upper bounds on the leakage to
the corresponding side-channel adversaries.

In summary, our main contributions are both theoretical and practical: On a theoret-
ical level, we define novel abstract domains that are suitable for the analysis of cache
side-channels, for a rich set of adversary models. On a practical level, we build Cache-
Audit, the first tool for the automatic, quantitative information-flow analysis of cache
side-channels, and we show how it can be used to derive formal security guarantees
from binary executables of sorting algorithms and state-of-the-art cryptosystems.

Current scope and future extensions of CacheAudit The current version of Cache-
Audit offers support for data, instruction, and mixed caches with FIFO, LRU, and PLRU

59

CHAPTER 5. CACHEAUDIT: A TOOL FOR THE STATIC ANALYSIS OF CACHE
SIDE-CHANNELS

replacement policies, for programs using a limited subset of 32-bit x86 instructions and
CPU flags. The current version does not offer support for multiple levels of caches,
multiple CPU cores, speculative execution, out-of-order execution, virtual memory, or
code using dynamic jump targets. See Section 5.8 for a discussion of the implications
of basing security analysis on such imperfect models and the challenges associated with
extending CacheAudit accordingly.

The (OCaml) source code and documentation of CacheAudit are available from the
project website1 and on GitHub2 to facilitate future extension.

Outline The remainder of the chapter is structured as follows. In Section 5.2, we
illustrate the power of CacheAudit on a simple example program. We describe the
design of CacheAudit, and the novel abstract domains in 5.4 and 5.5, respectively. We
present experimental results in Section 5.6, before we discuss prior work in Section 5.7
and conclude in Section 5.9 after discussing challenges for future work in Section 5.8.

5.2 Illustrative Example
In this section, we illustrate on a simple example program the kind of guarantees Cache-
Audit can derive. Namely, we consider the implementation of BubbleSort shown in
Figure 5.1, that receives its input in an array a of length n. We assume that the contents
of a are secret and we aim to deduce how much information a cache side-channel
adversary can learn about the relative ordering of the elements of a.

1 void BubbleSort(int a[], int n)

2 {

3 int i, j, temp;

4 for (i = 0; i < n - 1; ++i)

5 for (j = 0; j < n - 1 - i; ++j)

6 if (a[j] > a[j+1])

7 {

8 temp = a[j+1];

9 a[j+1] = a[j];

10 a[j] = temp;

11 }

12 }

Figure 5.1: An implementation of the BubbleSort algorithm

To begin with, observe that the conditional swap in lines 6–11 is executed exactly
n(n−1)

2 times. A trace-based adversary that can observe, for each instruction, whether it

1http://software.imdea.org/cacheaudit
2https://github.com/cacheaudit

60

http://software.imdea.org/cacheaudit
https://github.com/cacheaudit

Chapter 5. CacheAudit: A Tool for the Static Analysis of Cache Side-Channels

corresponds to a cache hit or a miss is likely to be able to distinguish between the two
alternative paths in the conditional swap, hence we expect this adversary to be able to
distinguish between 2

n(n−1)
2 execution traces. A timing-based adversary who can observe

the overall execution time is likely to be able to distinguish between n(n−1)
2 + 1 possible

execution times, corresponding to the number of times the swap has been carried out.
For an access-based adversary who can probe the final cache state upon termination,
the situation is more subtle: evaluating the guard in line 6 requires accessing both a[j]
and a[j+1], which implies that both will be present in the cache when the swap in
lines 8–10 is carried out. Assuming we begin with an empty cache, we expect that there
is only one possible final cache state.

CacheAudit enables us to perform such analyses (for a particular n) formally and
automatically, based on actual x86 binary executables and different cache types. Cache-
Audit achieves this by tracking compact representations of supersets of possible cache
states and traces of hits and misses, and by counting the corresponding number of
elements. For the above example, CacheAudit was able to precisely confirm the
intuitive bounds, for a selection of several n in {2, . . . , 64}.

In terms of security, the number of possible observations corresponds to the factor
by which the cache observation increases the probability of correctly guessing the secret
ordering of inputs. Hence, for n = 32 and a uniform distribution on this order (i.e. an
initial probability of 1

32! = 3.8 · 10−36), the bounds derived by CacheAudit imply that
the probability of determining the correct input order from the side-channel observation
is 1 for a trace-based adversary, 3.7 · 10−33 for a time-based adversary, and remains 1

32!
for an access-based adversary.

5.3 Adversary Model

In this section, we introduce four adversary models, based on the notion of channels
defined using view-functions, which capture adversaries with different observational
capabilities, see Chapter 4.

5.3.1 Adversary Views

The view of an access-based adversary that shares the memory space with the victim is
defined by

viewacc : (m0, c0)e0 . . . en−1(mn, cn) 7→ cn

and captures that the adversary can determine which memory blocks are contained in the
cache upon termination of the victim. In practice, this is achieved by probing the cache,
which changes the cache state and hence leads to information loss; the assumption
that the adversary can determine the cache state is a safe over-approximation of a real
adversary. An adversary that does not share the memory space also sees the cache state,
but cannot distinguish between the different blocks the victim has loaded in each cache

61

CHAPTER 5. CACHEAUDIT: A TOOL FOR THE STATIC ANALYSIS OF CACHE
SIDE-CHANNELS

set. We denote this view by viewaccd. The view of a trace-based adversary is defined by

viewtr : σ0e0 . . . en−1σn 7→ e0 . . . en−1

and captures that the adversary can determine whether each instruction results in a hit,
miss, or does not access memory. The view of a time-based adversary is defined by

viewtime : σ0e0 . . . en−1σn 7→ thit · |{i | ei = hit}| + tmiss · |{i | ei = miss}| + t⊥ · |{i | ei = ⊥}|

and captures that the adversary can determine the overall execution time of the program.
Here, thit, tmiss, and t⊥ are the execution times (e.g. in clock cycles) of instructions
that imply cache hits, cache misses, or no memory accesses at all. While the view
of the time-based adversary as defined above is rather simplistic, e.g. disregarding
effects of pipelining and out-of-order execution, notice that our semantics and our tool
can be extended to cater for a more fine-grained, instruction- and context-dependent
modeling of execution times, thanks to its modular design. We denote the side-channels
corresponding to the four views by Cacc, Caccd, Ctr, and Ctime, respectively.

5.3.2 Adversarially Chosen Input
In Section 4.2 we have assumed that the entire initial state is secret. Now we consider
the case that initial states are pairs consisting of high components that are meant to be
kept secret and low components that may be provided by the adversary, i.e., I = Ihi × Ilo.
For example, for a decryption algorithm, the high component of the initial state is the
key and the low component is the cache state and the ciphertext.

With low inputs, a program and a view define a family of channels Cσlo : Ihi → O,
one for each low component σlo ∈ Ilo. In this case we strive for an upper bound on∣∣∣ran(Cσlo)

∣∣∣, for all σlo ∈ Ilo. Such a bound enables us to use Theorem 5 to bound the
probability of correctly guessing the high component σhi of the initial state, regardless
of the specific choice of σlo. Note, however, that in multiple program executions with a
fixed high input σhi and different low inputs, information about σhi may aggregate. A
safe upper bound for the range of the corresponding channel is obtained by taking the
product of the ranges of the individual channels or, equivalently, by adding the bounds
on the number of leaked bits.

We conclude this section by considering the special case in which only the cache
state is adversarially chosen, i.e., we consider Ilo = C and Ihi =M. We show that the
size of the range of the channel corresponding to one specific initial cache state can be
used as a bound for the size of the range of channels for a larger class of initial cache
states. Based on this insight we only have to apply our analysis to the case of that one
specific state to obtain sound results for all cases of that class. This is particularly useful
as our analysis is more precise for known than for unknown initial cache states.

Lemma 6. 1. For adversaries adv ∈ {acc, accd}, all permutation-based replace-
ment policies, and all c1, c2 ∈ C such that c1 does not contain empty cache lines:
If no program execution accesses blocks in c1 or c2, then

∣∣∣ran(Cadv
c1

)
∣∣∣ ≥ ∣∣∣ran(Cadv

c2
)
∣∣∣.

62

Chapter 5. CacheAudit: A Tool for the Static Analysis of Cache Side-Channels

2. For adversaries adv ∈ {time, tr}, all permutation-based replacement policies,
and all c ∈ C: If no program execution accesses blocks in c, then

∣∣∣ran(Cadv
∅

)
∣∣∣ =∣∣∣ran(Cadv

c)
∣∣∣.

3. For adversaries adv ∈ {acc, accd}, the LRU replacement policy, and all c ∈ C:∣∣∣ran(Cadv
∅

)
∣∣∣ ≥ ∣∣∣ran(Cadv

c)
∣∣∣.

Here, ∅ is a shorthand for the empty cache state.

Proof. For the proof of (1) and (2) we rely on two properties of permutation-based
policies. First, newly inserted blocks have age 0. Second, upon a cache hit, the
permutation that is applied to the ages of memory blocks is determined by the age of
the requested block. As we assume that the program does not touch any blocks from c1

or c2, the ages of the blocks that are loaded during each execution—as well as cache
effects—are entirely determined by the sequence of memory accesses of the program.
In particular, ran(Cadv

c1
) = ran(Cadv

c2
) for adv ∈ {time, tr}, where c1 may be empty. For

adv ∈ {acc, accd}, we define a function that maps a cache in ran(Cadv
c1

) to a cache in
ran(Cadv

c2
) by replacing each block block that is also contained in c1 (i.e., b = c1(i), for

some i < k), with the block b′ of the same age in c2 (i.e., b′ = c2(i)). This function
is well-defined because all lines of c1 are filled with distinct blocks. The mapping
is always surjective, and it is also injective if c2 does also not contain empty lines.
The non-injective case corresponds to the fact that an access-based adversary cannot
distinguish between the empty lines in c2.

For (3) we define a mapping fc : ran(Cadv
∅

)→ ran(Cadv
c) and show that it is surjective.

For simplicity, we consider only one cache set, which we view as a sequence of blocks
that are indexed by their ages. Then fc(d) is obtained by appending to the end of d the
subsequence of blocks in c that do not appear in d. For showing surjectivity of fc, pick
a state d′ in ran(Cadv

c) and consider any sequence of memory accesses that leads to d′

from c. When applied to the empty cache state, that sequence leads to a cache state d
such that fc(d) = d′. Note that fc is well-defined because, for LRU, the ordering of the
blocks in c that do not appear in d does not depend on the sequence of memory accesses
that leads to d (which is, e.g., not true for PLRU). Also note that fc is in general not
injective: A program that either accesses block b or no block at all will produce two
possible final cache states when run on an empty initial cache, but only one possible
final cache state when run on an initial cache that contains only block b. �

5.4 Tool Design and Implementation
In this section we describe the architecture and implementation of CacheAudit.

We take advantage of the compositionality of the framework described in Section 4.3
and use a generic iterator module to compute fixpoints, where we rely on independent
modules for the abstract domains that correspond to the components of the next]

operation. Figure 5.2 depicts the overall architecture of CacheAudit, with the individual
modules described below.

63

CHAPTER 5. CACHEAUDIT: A TOOL FOR THE STATIC ANALYSIS OF CACHE
SIDE-CHANNELS

CacheAudit

x86 parser

Cache AD

Memory AD

Stack AD
abstract

domains

Flag AD

Value AD

RelSet AD

Interval AD

FiniteSet AD

Iterator

Trace AD
Timing AD

Figure 5.2: The architecture of CacheAudit. The solid boxes represent modules. Black-
headed arrows mean that the module at the head is an argument of the module at the
tail. White-headed arrows represent is-a relationships.

The current version of CacheAudit allows analyzing a first level cache that is
parametric in the cache size, the line size, the associativity, and the replacement policy.
We currently support the permutation-based policies LRU, FIFO, and PLRU. We
implement a write-through cache with no write-allocate, i.e., cache writes are directly
written to main memory, and when a write-miss occurs, no data is loaded to cache.

5.4.1 Control Flow Reconstruction

The first stage of the analysis is similar to a compiler front end. The main challenge is
that we directly analyze x86 executables with no explicit control flow graph, which we
need for guiding the fixpoint computation.

For the parsing phase, we rely on Chlipala’s parser for x86 executables [119],
which we extend to a set of instructions that is sufficient for our case studies (but not
complete). For the control-flow reconstruction, we consider only programs without
dynamically computed jump and call targets, which is why it suffices to identify the basic
blocks and link them according to the corresponding branching conditions and (static)
branch targets. We plan to integrate more sophisticated techniques for control-flow
reconstruction [120] in the future.

5.4.2 Iterator

The iterator module is responsible for the computation of the next] operator and of the
approximation of its fixpoint using adequate iteration strategies [109]. Our analysis uses
the iterative strategy [121], i.e., it stabilizes components of the abstract control flow

64

Chapter 5. CacheAudit: A Tool for the Static Analysis of Cache Side-Channels

graph according to a weak topological ordering, which we compute using Bourdoncle’s
algorithm.

The iterator also implements parts of the reduced cardinal power, based on the labels
computed according to the control-flow graph: Each label is associated with an initial
abstract state. The analysis computes the effect of the commands executed from that
label to its successors on the initial abstract state, and propagates the resulting final
states using the abstract domains described below. To increase precision, we expand
locations using loop unfolding, so that we have a number of different initial and final
abstract states for each label inside loops, depending on a parameter describing the
number of unfoldings we want to perform. Most of our examples (e.g. cryptographic
algorithms) require only a small, constant number of loop iterations, and we can choose
unfolding parameters that avoid joining states stemming from different iterations.

5.4.3 Abstract Domains

As described in Section 4.3, we decompose the abstract domain used by the iterator into
mostly independent domains describing different aspects of the concrete semantics.

Value Abstract Domains A value abstract domain represents sets of mappings from
variables to (integer) values. Value domains are used by the cache abstract domain to
represent ages of blocks in the cache (in that case, the variables are the ages of blocks),
and by the flag abstract domain to represent values stored at the addresses used in the
program. We have implemented different value abstract domains, such as the interval
domain, an exact finite sets domain (where the sets become intervals when they are
growing too large) and a relational set domain, which is described in [122].

Flag Abstract Domain In x86 binaries, there are no high level guards: instead, most
operations modify flags that are then queried in conditional branches. In order to deal
precisely with such branches, we need to record relational information between the
values of variables and the values of these flags. To that end, for each operation that
modifies the flags, we compute an over-approximation of the values of the arguments
that may lead to a particular flag combination. The flag abstract domain works in
conjunction with a value abstract domain to store the state of registers and memory
other than flags. It represents an abstract state as a mapping from values of flags to
elements of the value abstract domain. When the analysis reaches a conditional branch,
it can identify which combination of flag values corresponds to the branch and propagate
the appropriate abstract values.

Memory Abstract Domain The memory abstract domain associates memory ad-
dresses and registers with variables and translates machine instructions into the cor-
responding operations on those variables, which are represented using flag abstract

65

CHAPTER 5. CACHEAUDIT: A TOOL FOR THE STATIC ANALYSIS OF CACHE
SIDE-CHANNELS

domains as described above. One important aspect for efficiency is that variables corre-
sponding to addresses are created dynamically during the analysis whenever they are
needed. The memory abstract domain further records all accesses to main memory
using a cache abstract domain, as described below.

Stack Abstract Domain Operations on the stack are handled by a dedicated stack
abstract domain. In this way the memory abstract domain does not have to deal
with stack operations such as procedure calls, for which special techniques can be
implemented to achieve precise interprocedural analysis.

Cache, Trace, and Timing Abstract Domains The cache abstract domain tracks
information about the cache state. We represent this state by sets of mappings from
blocks to ages in the cache, which we implement using an instance of value abstract
domains. Effects from the memory domain are passed to the cache domain through
the trace domain. The cache domain tracks which addresses are accessed during
computation and returns information about the presence or absence of cache hits and
misses to the trace domain. The timings are then obtained as an abstraction from the
traces. We describe the details of cache, trace, and timing domains in Section 5.5 below.

5.5 Abstract Domains for Cache Adversaries

5.5.1 Domains for cache states
Abstractions of cache states are at the heart of analyses for all three cache adversaries
considered in this chapter. Thus, precise abstraction of cache states is crucial to
determine tight leakage bounds.

The current state-of-the-art abstraction for LRU replacement by [118] maintains
an upper and a lower bound on the age of every memory block. This abstraction was
developed with the goal of classifying memory accesses as cache hits or cache misses.
In contrast, our goal is to develop abstractions that yield tight bounds on the maximal
leakage of a channel. For access-based adversaries the leakage is bounded by the size
of the concretization of an abstract cache state, i.e. the size of the set of concrete cache
states represented by the abstract state. To derive tighter leakage bounds, we improve
previous work along two dimensions:

1. Instead of intervals of ages, we maintain sets of ages of memory blocks.

2. Upon each cache update, we apply a reduction that eliminates impossible combi-
nations of the ages of the blocks within each cache set.

In addition to increasing precision, these improvements enable us to analyze caches with
LRU, FIFO and PLRU replacement in a simple and uniform manner. Interval-based
analysis of FIFO and PLRU has been shown to be rather imprecise in the context of
worst-case execution time analysis [123].

66

Chapter 5. CacheAudit: A Tool for the Static Analysis of Cache Side-Channels

Representation and Concretization In our domain, an abstract cache state c] : B →
P(A) maintains a set of possible ages for each memory block. We update the ages of the
blocks belonging to different cache sets independently; in particular, the concretization
of an abstract cache state is the Cartesian product of the concretizations of the individual
sets. We present a formalization of the case in which the cache has only one set that is
initially empty, and we informally discuss the extension to multiple cache sets that do
not contain empty lines (as required for Lemma 6(1)).

At its core, the concretization of a cache set corresponds to the Cartesian product of
the ages of the blocks it contains. However, we filter out states that are unreachable in
real caches, namely (a) those in which two distinct blocks have the same age, unless
that age is k; (b) those with invalid age combinations. For example, for LRU and FIFO
replacement, a block of age a ∈ {1, . . . , k − 1} is necessarily preceded by a block of age
a − 1, i.e. cache sets never contain “holes”. For PLRU replacement, such holes are
possible at certain positions, but not at others.

For a given replacement policy, we represent the set of valid age combinations
as a subset V ⊆ P(A). For example, in a 4-way LRU cache, {0, 1, 2, 4} ∈ VLRU but
{0, 1, 3, 4} < VLRU because the missing age 2 constitutes an impossible hole. We use the
following algorithm to compute the set V of valid age combinations for a replacement
policy defined by permutations Πi:

(1) V B {∅}; R B ∅;

(2) Choose S ∈ V \ R; R B R ∪ {S }

(a) Simulate a cache miss by incrementing ages in S and adding 0:
S M B {min(a + 1, k) | a ∈ S } ∪ {0}

(b) Simulate cache hits to blocks of ages i ∈ S :
S i B {Πi(a) | a ∈ S }

(3) V B V ∪ {S M} ∪
⋃

i∈S {S i}

(4) If V \ R , ∅ then go to step (2);

(5) Return V;

Technically, the algorithm computes the fixpoint that is reached when updating the
empty state with arbitrary sequences of hits and misses. It follows by construction
that the final set V contains all possible age combinations for the replacement policy
represented by the permutations Π.

With this, we define the concretization γC(c]) of an abstract cache (with one cache
set) as the Cartesian product of the sets of ages of memory blocks, from which we re-
move states that map different blocks to the same age and states whose age combinations
are not represented in V:

γC(c]) = {c ∈ B → A | ∀b ∈ B : c(b) ∈ c](b) ∧ ∀a, b ∈ B : a , b⇒
(c(a) , c(b) ∨ c(a) = c(b) = k) ∧ {c(b) | b ∈ B} ∈ V}

67

CHAPTER 5. CACHEAUDIT: A TOOL FOR THE STATIC ANALYSIS OF CACHE
SIDE-CHANNELS

So far we have assumed that the cache is initially empty. For non-empty initial
caches, the holes in valid age combinations will contain blocks from the initial state,
which can be distinguished. To account for this, we augment V to represent the identities
of those blocks and extend the fixpoint computation accordingly. As there are only k
possible blocks in the initial state, the fixpoint can still be effectively computed. The
concretization γC(c]) then ensures that every concrete cache is an extension of a cache
in that fixpoint.

Abstract Cache Update We implement two algorithms for abstract cache updates,
where each offers a different trade-off between precision and performance. First, we
implement an abstract transformer that updates the possible ages of each memory block
considering only the possible ages of the accessed block, but without considering ages
other blocks in the same cache set. This corresponds to a direct product [109]. For LRU
and FIFO we gain precision by additionally performing a reduction after each cache
update, which makes sure that no impossible states with holes are represented. The
reduction works by restricting the maximal age of blocks in a cache set to the number
of currently cached blocks. The following example shows imprecisions we avoid when
using the reduction, and points out additional imprecisions that motivate the use of
the second algorithm we use for abstract update. It is based on actual allocations we
encountered when analyzing AES (see Section 5.6).

Example 4. Let a, b, c, d be blocks that fall into the same set of a 4-way LRU cache,
and e be a block that falls into a different cache set. We write x ∈ {n1, n2, n3} if block
x has possible ages n1, n2, n3. At a point of the program execution, the analysis has
reached one of the following states:

(i) a ∈ {0, 1}; b ∈ {0, 4}; c, d ∈ {4}
(ii) a ∈ {0, 1}; b ∈ {0, 4}; c ∈ {1, 2}; d ∈ {4}

(iii) a ∈ {0, 1, 2}; b ∈ {0, 4}; c ∈ {2, 3}; d ∈ {0, 1, 2}
In state (i), if ages are updated without a reduction, then an access to b will result in
a ∈ {1, 2}. This would mean that a possible allocation is (b = 0, a = 2), however it
cannot occur with LRU because it has a hole, as there is no element with age 1. If we
perform the reduction described above, as only two elements may be cached, we will
only allow ages 0 or 1, which solves the problem. This reduction, however, cannot solve
the following problems. Consider a program reaching the state (ii), where we know
that either b or e is accessed, after performing reduction, the updated states will be
a ∈ {0, 1, 2}; b ∈ {0, 4}; c ∈ {1, 2}. Disallowing c to grow to 3 eliminated a possible
hole, however here we obtain a possible allocation (b = 0, c = 1, a = 2), which cannot
be reached from state (ii), because it would be only reachable from the impossible
allocation (c = 0, a = 1). In state (iii), if we access b or e as in state (ii), the resulting
reduced state will be a ∈ {0, 1, 2, 3}; b ∈ {0, 4}; c ∈ {2, 3, 4}; d ∈ {0, 1, 2, 3}. Now an
additional problem can be observed: the allocation c = 4 is possible, i.e., c can be
outside of the cache; however when starting at state (iii), we know that c must remain
in the cache. This imprecision can then propagate, because if c is accessed at a later

68

Chapter 5. CacheAudit: A Tool for the Static Analysis of Cache Side-Channels

point, instead of a sure hit, we will record a hit or a miss.

To avoid the above-mentioned problems, we additionally implement an abstract
transformer that concretizes the abstract cache set, updates each concrete state, and
then abstracts again. This corresponds to the explicit computation of the best abstract
transformer [109]. We use it in cases where its computation is feasible, which was the
case with most experiments from our case study. The soundness of the best abstract
transformer follows by construction. The direct product is sound because (a) the
transformer assumes no knowledge on other blocks’ ages and thus excludes fewer
states than the best abstract transformer, and (b) the reduction removes only impossible
configurations which are also removed when concretizing.

The cache join and abstract cache effect are implemented in a straightforward
fashion. Two cache states are joined by a set union of the possible ages of all blocks.
The abstract cache effect is a union of the effects of all possibly accessed blocks, for all
possible ages. The soundness of these operations follows directly.

Lemma 7. The cache domains are locally sound.

Counting Cache States We describe the counting of observations for abstract cache
states with one cache set; for cache states with more than one cache set, we compute
the product of the number of concretizations of the individual sets.

For counting the observations a shared-memory access-based adversary Cacc can
make, we simply enumerate the concretizations γC(c]) and count their number. For
a disjoint-memory access-based adversary Caccd, we also enumerate concretizations,
but we take into account that a disjoint-memory adversary cannot distinguish between
different blocks that have been loaded during execution. That is, we only need to track
the number of elements of the fixpoint V that we observe during enumeration of γC(c]).

While each counting procedure takes exponential time in the associativity of the
cache, this is not a bottleneck in practice, where associativities 2,4,8 are common.

5.5.2 A Domain for Traces
We devise an abstract domain for keeping track of the sets of event traces that may
occur during the execution of a program. Following the way events are computed in the
concrete, namely as a function from cache states and memory effects (see Section 4.1.3),
the abstract cache domain provides abstract cache effects.

In our current implementation of CacheAudit, we use an exact representation for
sets of event traces: we can represent any finite set of event traces, and assuming an
incoming set of traces S and a set of cache effects E, we compute the resulting event
set precisely as updE](S, E) = {σ.e | σ ∈ S ∧ e ∈ E } .

Then soundness is obvious, since the abstract operation is the same as its concrete
counterpart. Due to complete loop unfolding, we do not require widenings, even though
the domain contains infinite ascending chains (see Section 5.4.2).

Lemma 8. The trace domain is locally sound.

69

CHAPTER 5. CACHEAUDIT: A TOOL FOR THE STATIC ANALYSIS OF CACHE
SIDE-CHANNELS

Efficient Implementation of the Event Trace Domain We represent sets of finite
event traces corresponding to a program location by a directed acyclic graph (DAG)
with vertices V , a dedicated root r ∈ V , and a node labeling ` : V → P(E) ∪ {t}. In this
graph, every node v ∈ V represents a set of traces γ(v) ∈ P(E∗) in the following way:

1. For the root r, γ(r) = {ε}

2. For v with L(v) = t and predecessors u1, . . . , un, γ(v) =
⋃n

i=1 γ(ui).

3. For v with L(v) , t and predecessors u1, . . . , un,

γ(v) =

t.u | u ∈ L(v) ∧ t ∈
n⋃

i=1

γ(ui)

Intuitively, every v ∈ V represents a set of event traces, namely the sequences of labels
of paths from r to v.

In the context of CacheAudit, we need to implement two operations on this data
structure, namely (a) the join tE

]
of two sets of traces and the (b) addition updE](S, E)

of an event to a particular set of traces. For the join of two sets of traces represented by
v and w, we add a new vertex u with label t and add edges from v and w to u. For the
extension of a set of traces represented by a vertex v by a set of events E, we first check
whether v already has a child w labeled with E. If so, we use w as a representation
of the extended set of traces. If not, we add a new vertex u with label E and add an
edge (u, v). In this way we make maximal use of sharing and obtain a prefix DAG. The
correctness of the representation follows by construction. In CacheAudit, we use hash
consing for efficiently building the prefix DAG.

Counting Sets of Traces The following algorithm counttr overapproximates the num-
ber of traces that are represented by a given graph.

1. For the root r, counttr(r) = 1

2. For v with L(v) = t and predecessors u1, . . . , un, counttr(v) =
∑n

i=1 countτ(ui)

3. For v with L(v) , t and predecessors u1, . . . , un,

counttr(v) = |L(v)| ·
n∑

i=1

counttr(ui)

The soundness of this counting, i.e. the fact that |γ(v)| ≤ counttr(v), follows by con-
struction. Notice that this counting procedure is precise if the labels represent singleton
events (because then every trace is uniquely represented in the graph), but that its
precision decreases dramatically with larger sets of labels. In our case, labels contain at
most three events and the counting is sufficiently precise.

70

Chapter 5. CacheAudit: A Tool for the Static Analysis of Cache Side-Channels

5.5.3 A Domain for Time

We currently model execution time as a simple abstraction of traces, see Section 4.1.
In particular, timing is computed from a trace over E = {hit,miss,⊥} by multiplying
the number of occurrences of each event by the time they consume: thit, tmiss, and t⊥,
respectively. The following algorithm counttime over-approximates the set of timing
behaviors that are represented by a given graph.

1. For the root r, counttime(r) = {0}

2. For v with L(v) = t and predecessors u1, . . . , un, counttime(v) =
⋃n

i=1 counttime(ui)

3. For v with L(v) , t and predecessors u1 . . . , un,

counttime(v) =

tx + t

∣∣∣∣∣∣∣ x ∈ L(v) ∧ t ∈
n⋃

i=1

counttime(ui)

The soundness of counttime, i.e. the fact that it delivers a superset of the set of possible
timing behaviors, follows by construction.

5.6 Case Studies

In this section we demonstrate the capabilities of CacheAudit in case studies where
we use it to analyze the cache side-channels of implementations of algorithms for
symmetric encryption and sorting. All results are based on the automatic analysis of
corresponding 32-bit x86 Linux executables that we compiled using gcc.

5.6.1 AES

We analyze the AES implementation from the PolarSSL 1.3.7 library with keys of
n ∈ {128, 192, 256} bits, where we consider the implementation with and without
preloading of lookup tables. We analyze with respect to the Cacc,Caccd,Ctr,Ctime adver-
sary models, with the LRU, FIFO, and PLRU replacement policies, for a set of cache
sizes, associativities, and line sizes. All results are presented as upper bounds of the
leakage in bits; for their interpretation see Theorem 5. In some cases, CacheAudit
reports upper bounds that exceed the key size n, which corresponds to an imprecision
of the static analysis. We opted against truncating to n bits to illustrate the degree of
imprecision. We highlight some of our findings.

In the following, we first present results for 256-bit keys before we discuss the effect
of varying the key size. The base case we consider is an LRU cache with associativity 4
and line size of 64B. We also explore the effect of varying each of these parameters.

71

CHAPTER 5. CACHEAUDIT: A TOOL FOR THE STATIC ANALYSIS OF CACHE
SIDE-CHANNELS

4 8 16 32 64 128
0

100

200

300

Cache Size [KB]

L
ea

ka
ge

[b
it]

Ctr

Cacc

Caccd

Ctime

Ctr/PL
Cacc/PL

Caccd/PL

Ctime/PL

(a) Effect of the attacker model and preloading (PL)

4 8 16 32 64 128
0

50

100

150

200

Cache Size [KB]

L
ea

ka
ge

[b
it]

Cacc/32B

Caccd/32B
Cacc/64B

Caccd/64B
Cacc/128B

Caccd/128B

(b) Effect of the cache line size

4 8 16 32 64 128
0

50

100

Cache Size [KB]

L
ea

ka
ge

[b
it]

PLRU
LRU
FIFO
PLRU/PL
LRU/PL
FIFO/PL

(c) Effect of the replacement policy

4 8 16 32 64 128
0

50

100

150

Cache Size [KB]

L
ea

ka
ge

[b
it]

Cacc/1-way
Cacc/2-way
Cacc/4-way
Cacc/8-way

Caccd/1-way

Caccd/2-way

Caccd/4-way

Caccd/8-way

(d) Effect of the associativity

Figure 5.3: Security guarantees for PolarSSL’s AES implementation with 256-bit keys. The
base case considers a 4-way set associative cache with a line size of 64B, and the LRU replace-
ment policy, and varying cache sizes.

72

Chapter 5. CacheAudit: A Tool for the Static Analysis of Cache Side-Channels

Preloading Preloading the lookup tables almost consistently leads to better security
guarantees in all scenarios (see e.g. Figure 5.3a). However, the effect becomes clearly
more apparent for cache sizes beyond 8KB, which is explained by the PolarSSL AES
tables exceeding the size of the 4KB cache by 256B. For cache sizes that are larger than
the preloaded tables, we can prove noninterference for Cacc and FIFO, Caccd and LRU,
and for Ctr and Ctime on LRU, FIFO, and PLRU. For Cacc with LRU and PLRU, this
result does not hold because the adversary can obtain information about the order of
memory blocks in the cache.

Line size A larger line size consistently leads to better security guarantees for access-
based adversaries (see e.g. Figure 5.3b). This follows because more array indices map
to a line, which decreases the resolution of the attacker’s observations.

Replacement policy In terms of replacement policies, for Caccd, Ctr, and Ctime we
consistently derive the lowest bounds for LRU. For Cacc and preloading, FIFO exhibits
the lowest leakage, with significantly lower bounds than the other policies, as shown
in Figure 5.3c. The reason for this is that with LRU and PLRU (but not with FIFO),
consecutive cache hits can lead to reordering of the cached elements, and thus the
access-based adversary can obtain information about the ordering of memory blocks in
the cache.

Associativity When increasing associativity, we observe opposing effects on the
leakage of Cacc and Caccd (see Figure 5.3d). This is explained by the fact that, for a fixed
cache size, increasing associativity means decreasing the number of sets. For Caccd,
which can only observe the number of blocks that have been loaded into each set, this
corresponds to a decrease in observational capability; for Cacc, which can observe the
ordering of blocks, this corresponds to an increase. This difference vanishes for larger
cache sizes because then each set contains at most one unique block of the AES tables.

Cache size In terms of cache size, we consistently derive lower bounds for larger
caches, with the exception of Caccd. For Caccd, the bounds increase because larger caches
correspond to distributing the table to more sets, which increases its possibilities to
observe variations. The guarantees we obtain for Caccd and Cacc converge for caches of
4 ways and sizes beyond 16KB (see e.g. Figure 5.3b). This is due to the fact that each
cache set can contain at most one unique block of the 4KB table. In that way, the ability
to observe ordering of blocks within a set does not give Cacc any advantage.

Key size The choice of key size increases the leakage significantly for Ctr and Ctime,
and leads to small variations for Cacc, as exemplified in Figure 5.4. The increase in
leakage for Ctr and Ctime can be explained by the longer computations for bigger keys:
A key size of 128, 192, or 256 bits results in 10, 12, or 14 rounds of transforming the
input, respectively. For bigger keys, as more rounds are performed, there are more

73

CHAPTER 5. CACHEAUDIT: A TOOL FOR THE STATIC ANALYSIS OF CACHE
SIDE-CHANNELS

accesses to the lookup tables, and each access that cannot be statically predicted as a
cache hit or miss doubles the number of possible traces.

8KB cache 16KB cache
AES key size Ctr Ctime Cacc Caccd Ctr Ctime Cacc Caccd

128 bit 199 7.64 89.09 52.79 199 7.64 72.85 66.93
192 bit 223 7.81 87.79 52.79 223 7.81 72.85 66.93
256 bit 279 8.13 90.07 52.79 279 8.13 73.44 66.93

Figure 5.4: Leakage in bits with AES when varying the key size, for a configuration with an
8KB and 16KB 4-way cache, with line size of 64B, with the LRU replacement policy.

The variations for Cacc are more subtle and have to do with two contradictory effects.
The first effect results from the key expansion process, during which the key is expanded
to round keys of 128 bits per round. For an n-bit key, the round keys are computed in
a loop, which generates n bits per iteration. Thus, for smaller keys this loop requires
more iterations: 10 for 128-bit keys, 8 for 192-bit keys, and 7 for 256-bit keys. The
leakage differs because within the i-th iteration, an integer round-constant rcon[i] is
read from an array in memory, from which more values are read if the key is small, thus
more blocks may compete with the lookup tables for the same cache sets. This explains
why in Figure 5.4, for the 8KB cache, there is less Cacc-leakage with 192-bit keys than
with 128-bit keys.

The second effect results from the size of the expanded key: when a smaller
encryption key is being used, there are less round keys, and less blocks corresponding
to the round keys compete with the lookup tables for their position in the cache sets.
Thus, the end-state can contain less possible ages for those blocks, corresponding to
less leakage. This explains the increased Cacc-leakage for 256-bit keys in Figure 5.4.

For Caccd, no difference is observed between key sizes for the analyzed cache
configurations, as the above-described effects affect the ordering of blocks in cache, but
not whether those blocks are in cache or not.

5.6.2 The eSTREAM Portfolio

The goal of the eSTREAM project [116] was to foster the creation of novel practical
stream ciphers. The project concluded in 2008 with the announcement of the final
eSTREAM portfolio, which consists of four ciphers that are particularly suited for imple-
mentation in software (Profile 1) and of three ciphers that are suited for implementation
in hardware (Profile 2).

We applied CacheAudit to analyse the reference implementations of the ciphers from
the eSTREAM Profile 1 portfolio, namely HC-128, Rabbit, Salsa20, and Sosemanuk.
We tested the versions of the algorithms with 128-bit keys for the encryption of a
512-byte message, for a 4-way cache with a line size of 64B. The results for LRU
are summarized in Figure 5.5a for Cacc, Figure 5.5b for Caccd, Figure 5.5c for Ctr,

74

Chapter 5. CacheAudit: A Tool for the Static Analysis of Cache Side-Channels

Figure 5.5d for Ctime, and are briefly discussed in the following paragraphs. The effects
on which we elaborate are observable with all replacement policies, and we restrict the
presentation to LRU for brevity.

5.6.2.1 HC-128

HC-128 is a stream cipher by [124] that relies on a 128-bit key, a 128-bit initialization
vector, and an internal state of 4KB, which is stored in two S-boxes of 512 entries of
32-bit values each. During keystream generation, new S-box values are generated every
512 steps.

Cache attacks against the HC series of ciphers have been demonstrated by [125]
and [126], for a different (but similar) adversary model. For small caches, CacheAudit
confirms this, and for all considered adversary models we obtain a non-zero leakage.
When increasing the size of the cache, CacheAudit shows that the leakage disappears;
varying the cache size was not considered by the mentioned attacks. The effect on
HC-128 leakage when varying the cache size is similar to AES leakage with preloading
(see Section 5.6.1 and compare with Figure 5.3a and Figure 5.3c). The reason for this
is that (a) AES and HC-128 rely on lookup tables of similar sizes; (b) dynamically
generating HC-128 S-boxes makes sure that they are freshly loaded in cache as a whole,
similarly to preloading AES lookup tables. Non-zero leakage is observed when the
cache is small, as some of the memory blocks containing S-box values are evicted
from cache or other memory competes with them for the same cache sets. For tested
configurations with a bigger cache, we obtain zero-leakage.

5.6.2.2 Rabbit

Rabbit is a stream cipher by [127] that relies on a 128-bit key and a 64-bit initialization
vector. A set of eight 32-bit state registers and eight 32-bit counters is used to perform
encryption based on basic arithmetic and bit-operations. The lack of key-dependent
memory lookups intends to avoid any leakage to the cache. This is reflected by the
results we obtained with CacheAudit: for all adversary models and all tested cache
configurations, we obtain zero-leakage.

It should be noted that [128] observes the possibility of a timing leak due to operand-
dependent timing of integer multiplication on platforms such as the Motorola PowerPC
G4e 7450. The current version of CacheAudit does not support operand-dependent
timing and hence does not detect this kind of leak.

5.6.2.3 Salsa20

Salsa20 is a stream cipher by [129]. Internally, the cipher uses XOR, addition mod 232,
and constant-distance rotation operations on an internal state of 16 32-bit words. The
lack of key-dependent memory lookups intends to avoid any leakage to the cache. With
CacheAudit we could formally confirm this intuition, and we consistently obtain upper
bounds of 0 for the leakage.

75

CHAPTER 5. CACHEAUDIT: A TOOL FOR THE STATIC ANALYSIS OF CACHE
SIDE-CHANNELS

5.6.2.4 Sosemanuk

Sosemanuk is a stream cipher by [130] that relies on keys of length ranging from 128
to 256 bits and an initialization vector of 128 bits. Sosemanuk uses a 10-word linear
feedback shift register, a finite-state machine, and an output function for combining both
of their outputs into the keystream. The reference implementation we analyze relies on
static tables of 4 KB for fast implementation of the feedback register, which have been
shown to be susceptible to cache attacks [131]. The analysis using CacheAudit confirms
this weakness. In particular, we obtain non-zero leakage for all tested configurations
and adversary models, with higher leakage observed for smaller cache. In this respect,
the results resemble those for AES without preloading (see Section 5.6.1).

Summary With CacheAudit, we can prove zero-leakage for Rabbit and Salsa20 for
all tested configurations. For HC-128, we prove zero-leakage only for bigger cache
sizes. For Sosemanuk we obtain non-zero leakage bounds for all tested configurations;
for small caches, Sosemanuk’s leakage bounds are lower than the bounds for HC-128.

5.6.3 Sorting Algorithms

In this section we use CacheAudit to establish bounds on the cache side-channels of
different sorting algorithms. This case study is inspired by an early investigation of
secure sorting algorithms [132]. While the authors of [132] consider only time-based
adversaries and noninterference as a security property, CacheAudit allows us to give
quantitative answers for a comprehensive set of side-channel adversaries, based on the
binary executables and concrete cache models.

As examples, we use implementations from [133] of the sorting algorithms Bubble-
Sort (see Figure 5.1), InsertionSort, and SelectionSort. We use integer arrays of lengths
between 8 and 64.

The results of our analysis are summarized in Figure 5.6. In the following we
highlight some of our findings.
• We obtain the same bounds for BubbleSort and SelectionSort, which is explained

by the similar structure of their control flow. A detailed explanation of those bounds
is given in Section 5.2. InsertionSort has a different control flow structure, which is
reflected by our data. In particular, InsertionSort has only n! possible execution traces
due to the possibility of leaving the inner loop, which leads to better bounds w.r.t.
trace-based adversaries. However, InsertionSort leaks more information to timing-based
adversaries, because the number of iterations in the inner loop varies and thus fewer
executions have the same timing.
• For access-based adversaries we obtain zero bounds for all algorithms. For trace-

based adversaries, the derived bounds do not imply meaningful security guarantees:
the bounds reported for InsertionSort are in the order of log2(n!), which corresponds
to the maximum information contained in the ordering of the elements; the bounds

76

Chapter 5. CacheAudit: A Tool for the Static Analysis of Cache Side-Channels

4 8 16 32 64
0

20

40

60

80

Cache Size [KB]

L
ea

ka
ge

[b
it]

Sosemanuk
Salsa20
HC-128
Rabbit

(a) Cacc

4 8 16 32 64
0

10

20

30

Cache Size [KB]

L
ea

ka
ge

[b
it]

Sosemanuk
Salsa20
HC-128
Rabbit

(b) Caccd

4 8 16 32 64
0

200

400

600

Cache Size [KB]

L
ea

ka
ge

[b
it]

Sosemanuk
Salsa20
HC-128
Rabbit

(c) Ctr

4 8 16 32 64
0

5

10

Cache Size [KB]

L
ea

ka
ge

[b
it]

Sosemanuk
Salsa20
HC-128
Rabbit

(d) Ctime

Figure 5.5: Security guarantees of eSTREAM finalists for Cacc,Caccd,Ctr,Ctime, for varying
cache sizes. The results are given for a 4-way set associative cache with a line size of 64B and
the LRU replacement policy.

77

CHAPTER 5. CACHEAUDIT: A TOOL FOR THE STATIC ANALYSIS OF CACHE
SIDE-CHANNELS

len 8 16 32 64
Ctr Ctime Cacc Ctr Ctime Cacc Ctr Ctime Cacc Ctr Ctime Cacc

BS 28 4.9 0 120 6.9 0 496 9 0 2016 11 0
IS 15.3 6.9 0 44.3 10.1 0 118 12.5 0 296 14.6 0
SS 28 4.9 0 120 6.9 0 496 9 0 2016 11 0

Figure 5.6: The table illustrates the security guarantees derived by CacheAudit for the im-
plementations of BubbleSort (BS), InsertionSort (IS), and SelectionSort (SS), for trace-based,
timing-based, and access-based adversaries, for LRU caches of 4KB and line sizes of 32B, for
array length (len) between 8 and 64.

reported for the other sorting algorithms exceed this maximum, which is caused by the
imprecision of the static analysis.
• We performed an analysis of the sorting algorithms for smaller (256B) and

larger (64KB) cache sizes and obtained the exact same bounds as in Figure 5.6, with
the exception of the case of arrays of 64 entries and 256B caches: there the leakage
increases because the arrays do not fit entirely into the cache due to their misalignment
with the memory blocks.

5.6.4 Discussion
A number of comments are in order when interpreting the bounds delivered by Cache-
Audit.

Meaning of Bounds The quantities computed by CacheAudit are upper bounds on
the leaked information that are not necessarily tight, that is, they may be pessimistic.
There are two reasons why the bounds may be pessimistic: First, CacheAudit may
over-estimate the amount of leaked information due to imprecision of the static analysis.
Second, the secret input may not be effectively recoverable from the leaked information
by an adversary that is computationally bounded.

The fact that CacheAudit delivers upper bounds has two consequences. First, the
results can only be used for certifying that a system is secure; they cannot be used for
proving that it is not. Second, the natural ordering on bounds cannot be directly used
for comparing the real-world security of systems. For example, “at most two bits leak”
is a correct (but pessimistic) bound for a system that does not leak any information, and
“at most one bit leaks” is a correct (and tight) bound for a system that leaks one bit. The
first bound is lower than the second, even though the first system is more secure than
the second.

Instead, lower bounds represent a better state of affairs in systematic reasoning about
the security of a system, which is a desirable goal for implementors of (cryptographic)
algorithms and side-channel countermeasures.

Use of Imperfect Models The guarantees delivered by CacheAudit are only valid
to the extent to which the models used accurately capture the relevant aspects of the

78

Chapter 5. CacheAudit: A Tool for the Static Analysis of Cache Side-Channels

execution platform. A recent empirical study of OS-level side-channels on different
platforms [134] shows that advanced microarchitectural features may interfere with the
cache, which can render countermeasures ineffective — and formal guarantees invalid.
See Section 5.8 for a discussion of the challenges associated with extending CacheAudit
with such advanced features.

Multiple Executions For the case of the cryptosystems we analyzed, the bounds hold
for the leakage about the key in one execution, with respect to any payload. For the
case of zero leakage (i.e., noninterference), the bounds trivially extend to bounds for
multiple executions and imply strong security guarantees. For the case of non-zero
leakage, the bounds can add up when repeatedly running the victim process with a fixed
key and varying payload, leading to a decrease in security guarantees. One of our prime
targets for future work is to derive security guarantees that hold for multiple executions
of the victim process. One possibility to achieve this is to employ leakage-resilient
cryptosystems [81, 82], where our work can be used to bound the range of the leakage
functions, as demonstrated in [84].

Initial Cache State We obtained all bounds in our experiments for initial states that
do not contain blocks that are accessed by the program. As described in Section 5.3.2,
they immediately extend to bounds for initial cache states containing empty lines.
This is relevant, e.g. for an adversary who can fill the initial cache state only with
lines from its own disjoint memory space. For LRU and access-based adversaries, our
bounds extend to arbitrary initial cache states without further restriction, as justified by
Lemma 6(3).

5.7 Related Work
Existing work on mitigation techniques for cache side-channels can be classified as
hardware-based, OS-based, code-based, or mixed:
• Hardware-based techniques include [135], who present a novel microarchitecture

that facilitates information-flow tracking by design, where they use noninterference as
a baseline confidentiality property. [136] propose non-monopolizable caches, which
is a hardware defense against access-based attacks that puts a bound on the number
of lines in each cache set that can be used by a process. Depending on the degree of
“non-monopolization”, an adversary cannot evict any or only some of the victim’s data
from the cache, which eliminates or at least weakens access-based attacks. [137] pro-
pose novel cache architectures that achieve attractive trade-offs between security and
performance. In particular, they rely on randomized cache replacement policies that are
designed to achieve security.
• OS-based techniques include StealthMem [22], a system-level defense against

cache-timing attacks in virtualized environments. The core of StealthMem is a software-
based mechanism that locks pages of a virtual machine into the cache and prevents

79

CHAPTER 5. CACHEAUDIT: A TOOL FOR THE STATIC ANALYSIS OF CACHE
SIDE-CHANNELS

their eviction by other VMs. StealthMem can be seen as a lightweight variant of
flushing/preloading countermeasures. A formalization of StealthMem is provided
in [138]. [139] propose CloudFlow, which is a cloud-wide information-control layer
based on OpenStack, which relies on a novel, fast VM introspection mechanism. [140]
propose system-level defenses for isolating machines in software-as-a-service en-
vironments, such as cache-aware CPU core assignment and cache-aware memory-
management. [141] proposes information-flow control based on explicit timing labels,
together with operating system support for its enforcement.
• Code-based techniques include the program counter security model [142], which

is to assume that an adversary can observe the value of the program counter at every
step. The authors also propose a program transformation that achieves security in this
model. Security implies resistance against control-flow based timing attacks, but does
not account for leaks through secret-dependent memory lookups. [143] propose a code
transformation for Java Bytecode to eliminate control-flow based attacks in Java Byte-
code, together with proofs of soundness. [144] extend this timing model with execution
histories, offering a hook for reasoning about cache state. [29] use bitslicing to avoid
the use of data caches and show that this leads to efficient software implementations of
AES. Finally, [114] discuss practical coding techniques for mitigating cache attacks on
x86 CPUs.
• Mixed techniques include [113], who propose an approach for mitigating timing

side-channels that is based on contracts between software and hardware. The contract
is enforced on the software side using a type system, and on the hardware side, e.g.,
by using dedicated hardware such as partitioned caches. The analysis ensures that an
adversary cannot obtain any information by observing public parts of the memory;
any confidential information the adversary obtains must be via timing, which is con-
trolled using dedicated mitigate commands that reduce the number of possible timing
observations.
The goal of our work is orthogonal to those approaches in that we focus entirely on
the analysis of microarchitectural side-channels rather than on their mitigation. Our
approach does not rely on a specific platform; rather it can be applied to any language
and hardware architecture for which abstractions are in place.

Technically, our work builds on methods from quantitative information-flow analysis
(QIF) [60], and the development of CacheAudit is inspired by a feasibility study [66].
Those points are covered in Chapter 2.

5.8 Challenges for Future Work

While CacheAudit relies on more accurate models of cache and timing than any
information-flow analysis we are aware of, there are several timing-relevant features of
microarchitectures that it does not yet capture (and make assertions about), including
second and third level caches; shared caches in multi cores; DRAM, commonly used as
main memory, which—just like caches—exhibits varying access latencies depending

80

Chapter 5. CacheAudit: A Tool for the Static Analysis of Cache Side-Channels

on the history of memory accesses; speculation, which may introduce memory accesses
that are not part of the “logical” execution of the program; out-of-order execution,
which may reorder memory accesses; translation lookaside buffers (TLBs) and other
mechanisms related to the implementation of virtual memory.

There are two immediate challenges regarding the features mentioned above:

1. To obtain detailed models that faithfully capture the behavior of these features in
modern microarchitectures.

2. To devise abstractions of these models that enable precise, yet efficient analysis.

Challenge (1) is daunting, as modern microarchitectures are extremely complex
and at the same time poorly documented, at least when it comes to documentation that
is publicly available. One promising approach to deal with this challenge is to apply
techniques from machine learning to reverse engineer microarchitectural models, as
recently demonstrated in [117]. Such approaches will, however, never be able to provide
absolute certainty about the correctness of the models.

Challenge (2) is equally daunting. The worst-case execution time (WCET) com-
munity has gathered experience in the design of analyses for some of the features
mentioned above, and it has been observed that speculation and out-of-order execution
dramatically increase analysis complexity. Current consumer microarchitectures are at
least an order of magnitude more complex than the most advanced microarchitectures
used in safety-critical systems for which WCET analyses have been devised. Thus,
breakthroughs in analysis technology will be required to solve Challenge (2).

Maybe a more viable approach than to attack Challenges (1) and (2) by devising
ever more complex models and analyses, is to actually make stronger abstractions that
are based upon fewer assumptions about the microarchitecture. This would have two
beneficial effects:

• An increase in confidence in the analysis results, as they would be based on fewer
assumptions that may or may not hold in reality.

• The fewer assumptions are made, the more microarchitectures satisfy the as-
sumptions. Security statements could possibly be made for large classes of
architectures.

As an example, in the context of cache side-channels one could base the side-channel
analysis on a lower bound on the cache capacity and a lower bound on the number
of cache sets, rather than the cache’s exact geometry. The challenge is to reduce
assumptions without sacrificing precision.

In a similar spirit, side-channel analysis may be performed at a higher level of
abstraction. Proposals such as StealthMem [22] introduce a security layer that enables
the construction of secure programs without having to know about microarchitectural
details. Can we characterize the guarantees that such security APIs provide and analyze
applications based on these guarantees? Also, can we analyze the implementations of
these security APIs to prove that they deliver the promised guarantees?

81

CHAPTER 5. CACHEAUDIT: A TOOL FOR THE STATIC ANALYSIS OF CACHE
SIDE-CHANNELS

5.9 Conclusions
We presented CacheAudit, the first automatic tool for the static derivation of formal,
quantitative security guarantees against cache side-channel attacks. We demonstrate
the usefulness of CacheAudit by establishing formal security guarantees for binary
executables of sorting algorithms and state-of-the-art cryptosystems.

82

6
Rigorous Analysis of Software Countermeasures

against Cache Attacks

6.1 Introduction
A large number of techniques have been proposed to counter cache-based side-channel
attacks. Some proposals work at the level of the operating system [22], others at the
level of the hardware architecture [137] or the cryptographic protocol [81]. However,
so far only software countermeasures have seen wide-spread adoption in practice.

The most defensive countermeasure is to forbid control flow, memory accesses, and
execution time of individual instructions to depend on secret data. While such code is
easily seen to prevent leaks through instruction and data caches, it also prevents the
performance gains enabled by such accelerators. More permissive countermeasures are
to ensure that both branches of each conditional fit into a single line of the instruction
cache, to preload lookup tables, or to permit secret-dependent memory access patterns
as long as they are secret-independent at the granularity of cache lines or sets. Such
permissive code can benefit from hardware acceleration, however, analyzing its security
requires intricate reasoning about the interactions of the program and the hardware
platform and has so far only been done for restricted cases.

A major hurdle for reasoning about such interactions is that it requires support for
accurate, logical and arithmetic reasoning on pointers (for tracking cache alignment),
but it also requires dealing with pointers symbolically (for capturing dynamically
allocated memory used by multi-precision integer arithmetic). In this chapter we present
novel reasoning techniques that support both features. Based on these techniques we
devise novel abstractions that capture a range of adversary models, including those
that can observe sequences of accessed addresses, or those that can observe sequences
of accessed memory blocks. We frame both contributions in terms of novel abstract
domains, which we implement on top of the CacheAudit static analyzer [45].

We evaluate the effectiveness of our techniques in a case study where we perform
the first formal analysis of commonly used software countermeasures for protecting
modular exponentiation algorithms against cache side-channels. The chapter contains a

83

CHAPTER 6. RIGOROUS ANALYSIS OF SOFTWARE COUNTERMEASURES
AGAINST CACHE ATTACKS

detailed description of our case study; here we highlight the following results:

• We analyze the security of the scatter/gather countermeasure used in OpenSSL 1.0.2f
for protecting window-based modular exponentiation. Scatter/gather ensures that
the pattern of data cache accesses is secret-independent at the level of granularity
of cache lines and, indeed, our analysis of the binary executables reports security
against adversaries that can monitor only cache line accesses.

• Our analysis of the scatter/gather countermeasure also reports a leak with respect
to adversaries that can monitor memory accesses at a more fine-grained resolution.
This weakness that has been exploited in the CacheBleed attack [145], where
the adversary observes accesses to the individual banks within a cache line. We
analyze the variant of scatter/gather published in OpenSSL 1.0.2g as a response
to the attack and prove its security with respect to powerful adversaries that can
monitor the full address trace.

• Our analysis detects the side-channel in the square-and-multiply based algorithm
in libgcrypt 1.5.2 that has been exploited in [14, 146], but can prove the absence
of instruction and data cache leaks in the square-and-always-multiply algorithm
used in libgcrypt 1.5.3, for some compiler optimization levels.

Overall, our results illustrate the dependency of software countermeasures against
cache attacks on brittle details of the compilation and the hardware architecture, and
they demonstrate how the techniques developed in our chapter can effectively support
rigorous analysis of software countermeasures.

In summary, our contributions are to devise novel techniques that enable cache-
aware reasoning about dynamically allocated memory, and to put these techniques
to work in the first rigorous analysis of widely deployed permissive countermeasures
against cache side-channel attacks.

The remainder of this chapter is structured as follows. In Section 6.2 we illustrate
the scope of our techniques by example. In Section 6.3 we define the adversary models.
In Section 6.4 and 6.5 we define our novel abstract domains. We present our case
studies in Section 6.6 before we revisit prior art and conclude in Sections 7.5 and 5.9,
respectively.

6.2 Illustrative Example
We illustrate the scope of the techniques developed in this chapter using a problem
that arises in implementations of windowed modular exponentiation. There, powers of
the base are pre-computed and stored in a table for future lookup. Figure 6.1 shows
an example memory layout of two such pre-computed values p1 and p2, each of 3072
bits. An adversary that observes accesses to the six memory blocks starting at 80eb140
knows that p2 was requested, which can give rise to effective key-recovery attacks [146].

84

Chapter 6. Rigorous Analysis of Software Countermeasures against Cache Attacks

Figure 6.1: Layout of pre-computed values in main memory, for the windowed modular
exponentiation implementation from libgcrypt 1.6.1. Data highlighted in different colors
correspond to the pre-computed values p2 and p3, respectively. Black lines denote the
memory block boundaries, for an architecture with blocks of 64 bytes.

Defensive approaches for table lookup, as implemented in NaCl or libgcrypt
1.6.3, avoid such vulnerabilities by accessing all table entries, in a constant order.
OpenSSL 1.0.2f instead uses a more permissive approach that accesses only one table
entry, however it uses a smart layout of the tables to ensure that the requested memory
blocks are loaded into cache in a constant order. An example layout for storing 8
pre-computed values is shown in Figure 6.2. The code that manages such tables consists
of three functions, which are given in Figure 6.3.

• To create the layout, the function align aligns a buffer of memory with the
memory block boundary by ensuring the least-significant bits of the buffer address
are zeroed, see Figure 6.3a.

• To write a value into the array the function scatter ensures that the bytes of the
precomputed values are stored spacing bytes apart, see Figure 6.3a.

• Finally, to retrieve a pre-computed value from the buffer, the function gather
assembles the value by accessing its bytes in the same order they were stored, see
Figure 6.3c.

Reasoning about the effectiveness of such countermeasures is a daunting task,
involving reasoning about the interactions of the program and the hardware platform.
First, one must ensure that the compiler does not perform unexpected optimizations.
Second, one must ensure that the data is aligned correctly, considering the memory and
cache geometry, e.g. considering the size of the cache lines. Third, one must ensure
that the assertions hold when considering unknown dynamic locations in memory, as
practical implementations place the pre-computed values in heap memory.

85

CHAPTER 6. RIGOROUS ANALYSIS OF SOFTWARE COUNTERMEASURES
AGAINST CACHE ATTACKS

Figure 6.2: Layout of pre-computed values in main memory, achieved with the scatter/-
gather countermeasure. Data highlighted in different colors correspond to pre-computed
values p0, . . . , p7, respectively. Black lines denote the memory block boundaries, for an
architecture with blocks of 64 bytes.

The techniques we develop in this chapter enable, for the first time, the rigorous
security analysis of permissive countermeasures against side-channel attacks, such as
the one in Figure 6.3, based on executable code. Specifically, our techniques enable the
static analysis of basic logical and arithmetic operations on symbolic values, which is
required for reasoning about cache alignment in the presence of dynamically allocated
memory in functions such as align, scatter, and gather. We further develop
techniques for tracking sets of observations of cache adversaries, and for computing their
size, which enables the quantification of leaks. The results we derive are quantitative
upper bounds on the information leaked to different kinds of adversaries; they include
formal proofs of non-leakage, but go beyond them in that they help shed insights into
the severity of leaks, should they exist.

6.3 Security Against Memory Trace Attacks
In this section we define three kinds of adversaries that can monitor a program’s accesses
to main memory, ranked by their observational capabilities.

6.3.1 A Hierarchy of Memory Trace Observers
We define three notions of security against memory trace attacks, corresponding to
different observational capabilities of the adversary. We express these capabilities in
terms of views, which are functions that map traces in Col to the set of observations

86

Chapter 6. Rigorous Analysis of Software Countermeasures against Cache Attacks

1 align (buf):
2 return buf − (buf & (block sz − 1) + block sz

(a) Aligning a buffer to block boundary.

1 scatter (buf , p , k):
2 for i := 0 to N − 1 do
3 buf [k + i * spacing] := p[k][i]

(b) Storing a pre-computed value into a buffer.

1 gather (r , buf , k):
2 for i := 0 to N − 1 do
3 r [i] := buf [k + i * spacing]

(c) Retrieving a pre-computed value from a scattered buffer.

Figure 6.3: Scatter/gather method for storing and retrieving pre-computed values.

an adversary can make. The views can be derived by successively applying lossy
transformations to the sequence of memory accesses of a program, which leads to a
hierarchy of security definitions.

Address-trace observer The first adversary we consider is one that can observe the
full sequence of memory locations that are accessed. Security against this adversary
implies resilience to many kinds of microarchitectural side-channels, through cache,
TLB, DRAM, and branch prediction buffer.1 This observer, when restricted to addresses
of instructions, is equivalent to the program counter security model [142].

Formally, we define the address-trace observer by the view, which takes the initial
state and returns the exact sequence of accessed addresses in memory:

viewato : (m0, c0)e0 . . . en−1(mn, cn) 7→ effM(m0) . . . effM(mn)

Block-trace observer The second adversary is one that can observe the sequence
of memory blocks loaded by the user to the cache. Security against this adversary
implies resilience against adversaries that can monitor memory accesses at the level of
granularity of cache lines.

For the formalization, recall that the cache logic splits the bit-representation of an
n-bit memory address in two parts: the least significant log2 b bits represent the position
of the address within a memory block of b bytes, and the most significant n− log2 b bits

1We do not model, or make assertions about, the influence of advanced features such as out-of-order-
execution.

87

CHAPTER 6. RIGOROUS ANALYSIS OF SOFTWARE COUNTERMEASURES
AGAINST CACHE ATTACKS

represent the set index (identifying the cache set) and the tag (identifying data within a
cache set).

tag set index block offset

The projection of an address a to the most significant n − log2 b bits, denoted by
block(a), hence gives a formal account of the observation an adversary makes by
observing memory addresses at the granularity of blocks. The block-trace observer is
then defined by

viewbto = (map block) ◦ viewato ,

where map block is the natural lifting of block to sequences.
Note that security against the block-trace observer does not exclude side-channel

attacks by adversaries that can make more precise observations about memory accesses,
e.g. by observing DRAM or cache bank accesses. Our analysis is easily adapted to
capture such adversaries by including more or less bits into the projection of the address,
see the discussion of the CacheBleed attack in Section 6.6.

B-block trace observer Finally we consider a class of adversaries that can observe a
sequence of memory blocks, but that can only make limited observations about repeated
accesses to the same memory block (which we call stuttering). This captures that
the adversary cannot count the number of executed instructions, as long as they are
guaranteed not to access main memory2; it is motivated by the fact that the latency of
cache misses dwarfs that of cache hits and is hence easier to observe.

We formalize this intuition in terms of a function viewbbto that takes as input a
sequence w of blocks and maps maximal subsequences br to the block b. That is,
repetitions of any block are removed.

Example 5. The function viewbbto maps both aabcddc and abbbccddcc to the sequence
abcdc, making them indistinguishable to the adversary.

We also consider a more powerful observer adversary that can distinguish between
repetitions of blocks if they exceed a certain number. We omit the technical details for
brevity.

6.3.2 Quantifying Leaks
The approach we describe in Chapter 4 quantifies the degree of confidentiality provided
by a program by deriving bounds on the number of observations an adversary can make.
Following this approach, we quantify the information leakage (in bits) as

log2 |view(Col)| . (6.1)

2Here we rely on the (weak) assumption that the second b in any access sequence · · · bb · · · is
guaranteed to hit the cache.

88

Chapter 6. Rigorous Analysis of Software Countermeasures against Cache Attacks

An advantage of this approach is that it can be automated using standard program
analysis techniques and that it comes with different interpretations in terms of security:
For example, it can be related to a lower bound on the expected number of guesses an
adversary has to make for successfully recovering the secret [52], or to an upper bound
for the probability of successfully guessing the secret in one shot [49]. A disadvantage
of the application of this approach in previous works is that they have not distinguished
between variations in adversary observations that are due to secret data and those that
are due to public data. Rather, all unknown data has been considered to be secret (see
Section 5.3.2), which can lead to severe imprecisions of the analysis.

In the language of information flow analysis, secret data is called high, and public
data is called low. In this chapter, we propose a novel approach to handle low data by
introducing symbolic values, which are values that are not known in advance but do
not contain secrets. If a symbolic value is part of the adversary’s view, the adversary
will observe the concrete valuation of the value without learning additional information
about the secret data. Thus, symbols take the role of low data, and all remaining
variations of the output are potentially due to high data. In that sense, our analysis can
be seen as the first quantitative information-flow analysis that can deal with low inputs
symbolically. In Section 6.4, we describe our use of symbolic values to capture pointer
arithmetic with unknown (but non-secret) memory locations.

6.4 Abstract Domain for Cache-Aware Pointer Arith-
metic

Cache-aware code often uses Boolean and arithmetic operations on pointers in order
to achieve favorable memory alignment. In this section we devise the masked symbol
domain, which is a simple abstract domain that enables the static analysis of such code
in the presence of dynamically allocated memory.

6.4.1 Representation
The masked symbol domain is based on finite sets of what we call masked symbols,
namely pairs (s,m) consisting of a symbol s ∈ Syms and a mask m ∈ {0, 1,>}n. The
idea is that the symbol s represents an unknown base address and m represents the
pattern of known and unknown bits. Here, {0, 1} stand for known bits and > stands
for unknown bits. The i-th bit of a masked symbol (s,m) is hence equal to mi, unless
mi = >, in which case it is unknown. In the first case we call the bit masked, in the
second symbolic. We abbreviate the mask (>, . . . ,>) by >.

Two special cases of masked symbols are worth pointing out:

1. (s,>) represents an unknown constant, and

2. (s,m) with m ∈ {0, 1}n represents the bit-vector m.

That is, pairs of the form (s,m) generalize both bitvectors and unknown constants.

89

CHAPTER 6. RIGOROUS ANALYSIS OF SOFTWARE COUNTERMEASURES
AGAINST CACHE ATTACKS

6.4.2 Concretization and Counting
We now give a semantics to elements of the masked symbol domain. This semantics is
parametrized w.r.t. instantiations of the symbols. For the case where masked symbols
represent partially known heap addresses, a valuation corresponds to one specific layout.

Technically, we define the concretization of finite sets F ⊆ Syms × {0, 1,>}n w.r.t. a
mapping σ : Syms→ {0, 1}n taking symbols to bit-vectors:

γσ(F) = {σ(s) ⊕ m | (s,m) ∈ F}

Here ⊕ is defined bitwise by ci ⊕ mi = mi whenever mi ∈ {0, 1}, and ci otherwise.
The following proposition shows that precise valuation of the constant symbols can

be ignored for deriving upper bounds on the numbers of values that the novel domain
represents. It enables the quantification of information leaks in the absence of exact
information about locations on the heap.

Proposition 3. For every valuation σ : Syms→ B we have |γσ(F)| ≤ |F|

Note that, with this definition we do not assume any relationship between symbols.
Below we will increase its precision by tracking basic arithmetic relations between
symbols.

6.4.3 Update
We support two kinds of operations on elements of the masked symbol domain. The
first tracks patterns on bit-vectors and is needed for reasoning about memory alignment.
The second tracks the arithmetic relationship between masked symbols and is needed
for basic pointer arithmetic and equality checks. Here we describe only operations
between individual masked symbols, the lifting to sets is obtained by performing the
operations on all pairs of elements.

Tracking Bits An important class of operations for cache-aware coding are those
that allow the alignment of data to memory blocks without knowing the precise pointer
value.

Example 6. The following code snippet allocates 1000 bytes of heap memory and
stores a pointer to this chunk in x.

x = malloc(1000);

y = (x & 0xFFFFFFC0) + 0x40;

The second line ensures that the 6 least significant bits of that pointer are set to 0,
thereby aligning it with cache lines of 64 bytes. Finally, adding 0x40 ensures that the
resulting pointer points into the allocated region while keeping the alignment.

90

Chapter 6. Rigorous Analysis of Software Countermeasures against Cache Attacks

s & 0 = 0 s & 1 = >

s | 1 = 1 s | 0 = >

s ˆ s = 0 s ˆ 0 = >

s - s = 0

Table 6.1: Bit operations and their effect on masked symbols. The left column shows
operations that recover mask bits from symbols. The right column contains operations
that leave symbolic bits unmodified.

To reason about this kind of code, we distinguish between operations that allow the
introduction of a mask and those that maintain a symbol: The left column of Table 6.1
lists logical bit operations that translate symbolic bits into masked bits, i.e. creating a
mask. For example, the operation x & 0xFFFFFFC0 in Example 6 results in a masked
symbol

(sx, (> · · · >000000)) . (6.2)

The right column in Table 6.1 lists logical bit operations that leave symbolic bits
unmodified, thus maintaining the symbol. Information about the mask can also be
maintained throughout arithmetic operations such as additions, as long as all carry bits
can be absorbed within the mask. For example, the addition of 0x3F to (6.2) results in
a masked symbol

(sx, (> · · · >111111)) ,

for which we can statically determine containment in the same cache line as (sx, (> · · · >000000)).
In cases when an operation does affect the symbolic bits, we take a conservative

approach and drop information about the symbols. Formally,

(s1,m1) ◦ (s2,m2) = ((s3),>) ,

where s3 is a fresh symbol. For example, the addition of 0x40 to (6.2) in Example 6
results in the masked symbol

(sy, (> · · · >000000)) ,

which points to the beginning of some (unknown) cache line.

Tracking Arithmetic Relationships Besides providing support for bit-operations on
symbolic addresses we also require support for basic pointer arithmetic.

Example 7. The following code snippet sets the values of array A for indices i =

0, . . . , 9.

int *x = A + 10;

int *y;

for (y = A; y < x; y++)

*y = get_value (...);

91

CHAPTER 6. RIGOROUS ANALYSIS OF SOFTWARE COUNTERMEASURES
AGAINST CACHE ATTACKS

The loop terminates whenever pointer y points at or beyond x. While pointer arithmetic
here can be avoided by an implementation using an integer counter in the for-condition,
modern compilers often optimize such implementations to a form using pointer arith-
metic.

The operations on symbols defined so far are not sufficient for a precise analysis of
the code in example 7 in case that A has a symbolic value. For example, if the value of
A is (s,>), at iteration i = 2, 3, 4, . . . of the loop, y will be assigned a fresh symbolic
value (si,>); thus, the equality or inequality between s and si cannot be determined,
and the loop termination cannot be established.

To address this shortcoming, we add support for tracking simple arithmetic con-
gruences between masked symbols. For masked symbols s1, s2, those congruences are
terms of the form s1 = s2 + o, where o is an integer constant. Building up a set of
constraints C between masked symbols allows establishing equalities between masked
symbols. In the example above, at the first iteration of the loop we determine that
y = (s,>) and x = (s′,>) = (s,>) + 10. After the tenth iteration of the loop, we
determine that y = (s′,>) = x. The termination of the loop is established by precisely
determining the CPU flag values, which we explain below.

Technically, we model congruences by defining the semantics γσ(F) of a set of
masked symbols only w.r.t. symbol valuations σ : Syms→ {0, 1}n that satisfy

σ(s1) ⊕ m1 = σ(s2) ⊕ m2 + o ,

for all (s1,m1) = (s2,m2) + o ∈ S . We implement congruences by storing a function
eq : Syms→ Syms× {0, 1}n. We count eq(F) instead of F, which increases the precision
of counting.

CPU Flag Values When performing an update involving masked symbols, CPU flag
values may be affected. By default we safely assume that all flag combinations are
possible. To improve precision of the analysis, we identify several cases where flags
are determined even though values are symbolic. Among those cases, we identify the
following:

1. If at least one masked bit of the result is non-zero, then ZF = 0.

2. If the operation does not affect the (possibly symbolic) most-significant bits of
the operands, then CF = 0.

3. For operations sub src, dst (or equivalently, cmp src, dst), if we can de-
duce that src = dst + c with c , 0, then ZF = 0.

We apply the information learned about flags in combination with arithmetic congru-
ences, to establish loop termination. For example, at the end of the loop in Example 7,
the termination of the loop is determined by the operation cmp x, y followed by a
conditional jump. After loop iteration i ∈ {1, . . . , 9}, case 3 allows establishing that the

92

Chapter 6. Rigorous Analysis of Software Countermeasures against Cache Attacks

conditional jump is taken, and that the loop is not terminated. At iteration i = 10, x and
y have the same symbolic value, which allows establishing that because ZF = 1, the
loop is terminated.

Local Soundness To establish the local soundness (see (4.4) in Section 4.3) of the
masked symbol domain, we consider the abstract next]-operator for the domain, which
is implemented by the update-function described in this section.

Lemma 9. The masked symbol domain is locally sound.

Informally, the soundness follows from the soundness of the ingredients of its
update: (a) fresh symbols are used whenever exact values are not known; (b) the trivial
congruence x = x + 0 is used whenever no congruence between x and another masked
symbol is known; (c) all flag combinations are considered whenever the operation does
not determine the exact flags.

6.5 Abstract Domains for Memory Access Traces
In this section, we present data structures for representing the set of possible memory ac-
cesses a program can make, and for computing the number of observations that different
side-channel attackers can make. For this we devise the access-trace domains, which
capture the adversary models introduced in Section 6.3.1: address-trace (adversary
who can observe addresses), block-trace (adversary who can observe memory blocks),
and b-block-trace (adversary who can observe memory blocks modulo repetitions).
We describe those domains, and elaborate on developments that allow us to precisely
capture cases where a b-block-trace adversary learns less information than an address-
and block-trace adversary, as is the case in the following example.

Example 8. The following code snippet presents implicit information flow from the
secret value s to the public output x.

if (s == 1) x = 1; else x = 0;

Figure 8 shows layout of the code snippet in the binary. Regardless whether the layout
of the executable causes the code to fit into one memory block or two, the same sequence
of blocks will be loaded into cache.

6.5.1 Representation
We use a directed acyclic graph (DAG) to compactly represent traces of memory
accesses. While a DAG representation can precisely represent a set of traces [45], a
counting procedure that does not require enumerating all traces may lose precision.
The representation we devise is precise for the b-block observer, and provides an easy
counting procedure.

93

CHAPTER 6. RIGOROUS ANALYSIS OF SOFTWARE COUNTERMEASURES
AGAINST CACHE ATTACKS

(a) The if-branch causes two I-cache accesses to addresses within block 580;
The else-branch causes one I-cache access to an address within block 580.

(b) The if-branch causes two I-cache accesses to addresses within block 580;
The else-branch causes one I-cache access to an address within block 5c0.
Afterwards, in both cases instructions within block 5c0 will be executed.

Figure 6.4: Two possible layouts of if-then-else code, compiled with gcc. The high-
lighted code corresponds to the if-check and jump, the if-branch and the else-branch,
respectively. The red curve represents the jump target in the end of the if-branch. Black
lines denote block boundaries, for an architecture with 64-byte memory blocks.

The DAG has a set of nodes N representing memory accesses, with a unique root
r and a set of edges E ⊆ N × N. We equip each node n ∈ N with a label L(n) that
represents the adversary’s view of the node (i.e. addresses or blocks), and a repetition
count R(n) that represents the number of times each address may be repeatedly accessed.
We represent labels L(n) using the masked symbols abstract domain (see Section 6.4),
and use a finite set abstraction to represent R(n).

6.5.2 Concretization and Counting

In an access-trace domain, each node n represents the set of traces of the program up to
this point of the analysis. Its concretization function is defined as

γ(n) =
⋃

r=n0···nk=n is a
path from r to n

{`t0
0 · · · `

tk
k | `i ∈ L(ni), ti ∈ R(ni)} (6.3)

For quantitatively assessing leaks we are interested in the number of observations
|γ(n)| an adversary can make. An upper bound on this number is easily computed from

94

Chapter 6. Rigorous Analysis of Software Countermeasures against Cache Attacks

the access-trace domains using the following recursive equation:

count(n) = |R(n)| · |L(n)| ·
∑

(s,n)∈E

count(s) (6.4)

For the b-block trace observer, we replace the factor |R(n)| from the expression in (6.4)
by 1, which captures that this observer cannot distinguish between repetitions of accesses
to the same memory block.

6.5.3 Update and Join

The access-trace domains are equipped with functions for update and join, which govern
how sets of traces are extended and merged, respectively. The domains are defined with
respect to an observer modeled by the view ∈ {viewato, viewbto, viewbbto}, for the different
views introduced in Section 6.3.2. Below we overload the notation of view to take as
input sets of addresses, and return the respective set of observations (i.e. addresses or
blocks).

The update receives a node n representing a set of traces of memory accesses, and it
extends n by a new access to a potentially unknown address that represented a finite set
of masked symbols F. Technically:

1. If the set of masked symbols is not a repetition (i.e. if L(n) , view(F)) the
update function appends a new node n′ to n (adding (n, n′) to E) and it sets
L(n′) = view(F) and R(n′) = {1}.

2. Otherwise (i.e. if L(n) = view(F)) it increments the possible repetitions in R(n)
by one.

The local soundness (see (4.4) in Section 4.3) of the access-trace domains follows
directly because the abstract and the concrete updates are the same, with the difference
that the abstract update results in a more compact representation in case of repetitions.

Lemma 10. The access-trace domains are locally sound.

The join for two nodes n1, n2 first checks whether those nodes have the same
parents and the same label, in which case n1 is returned, and their repetitions are joined.
Otherwise a new node n′ with L(n′) = {ε} is generated and edges (n1, n′) and (n2, n′) are
added to E.

To increase precision in counting for the b-block adversary, joins are delayed until
the next update is performed. This captures cases where an if-then-else statement spans
two memory blocks, both of which are accessed regardless whether if-condition is taken
or not, as demonstrated in Figure 6.4b.

95

CHAPTER 6. RIGOROUS ANALYSIS OF SOFTWARE COUNTERMEASURES
AGAINST CACHE ATTACKS

6.6 Case Study

In this section we present a case study in which we leverage the techniques developed in
this chapter for the first rigorous analysis of several countermeasures against cache side-
channel attacks against modular exponentiation algorithms from versions of libgcrypt
and OpenSSL from April 2013 to March 2016. We report on results for leakage to the
adversary models presented in Section 6.3.1 due to instruction-cache (I-cache) accesses
and data-cache (D-cache) accesses.3 As the adversary models are ordered according to
their observational capabilities, this sheds light into the level of provable security that
different protections offer.

6.6.1 Tool building

We implement the novel abstract domains described in Sections 6.4 and 6.5 on top of
the CacheAudit open source static analyzer [45]. CacheAudit provides infrastructure for
parsing, control-flow reconstruction, and fixed point computation. Our novel domains
extend the scope of CacheAudit by providing support for (1) the analysis of dynamically
allocated memory, and for (2) adversaries who can make fine-grained observations
about memory accesses. The resulting extensions to CacheAudit will be made publicly
available.

6.6.2 Target Implementations

For libgcrypt we consider versions 1.5.2 to 1.6.3. In those versions of libgcrypt, four
variants of modular exponentiation are implemented, with different protections against
side-channel attacks. In addition to those implementations, we analyze two side-channel
protections introduced in OpenSSL versions 1.0.2f and 1.0.2g, respectively. For fairness
of comparison of security and performance we implement all protections on top of
libgcrypt 1.6.3 and analyze this code instead of OpenSSL.

To generate the target executables of our experiments, we use ElGamal decryption
routines based on each of the above-described implementations of modular exponentia-
tion and the respective countermeasures, resulting in 5 implementations. We compile
them using GCC 4.8.4, on a 32-bit Linux machine running kernel 3.13. For ElGamal
decryption, we use a key size of 3072 bits.

The current version of CacheAudit supports only a subset of the x86 instruction set
and CPU flags, which we extend on demand. To bound the required extensions we focus
our analysis on the regions of the executables that were targeted by exploits and to which
the corresponding countermeasures were applied, rather than the whole executables. As
a consequence, the formal statements we derive only hold for those regions. In particular,
we do not analyze the code of the libgcrypt’s multi-precision integer multiplication and

3We also analyzed the leakage from accesses to shared instruction- and data-caches; for the analyzed
instances, the leakage results were consistently the maximum of the I-cache and D-cache leakage results.

96

Chapter 6. Rigorous Analysis of Software Countermeasures against Cache Attacks

modulo routines, and we specify that the output of the memory allocation functions (e.g.
malloc()) is symbolic (see Section 6.4).

6.6.3 Square-and-Multiply Modular Exponentiation
The first target of our analysis is modular exponentiation by square-and-multiply. The
algorithm is depicted in Figure 6.5 and is implemented, e.g., in libgcrypt version 1.5.2.
Line 5 of the algorithm contains a conditional branch whose condition depends on a bit
of the secret exponent. An attacker who can observe the victim’s accesses to instruction
or data caches may learn which branch was taken and identify the value of the exponent
bit. This weakness has been shown to be vulnerable to key-recovery attacks based on
prime+probe [13, 146] and flush+reload [14].

1 r := 1
2 for i := |e| − 1 downto 0 do
3 r := mpi sqr(r)
4 r := mpi mod(r, m)
5 if ei = 1 then
6 r := mpi mul(b, r)
7 r := mpi mod(r, m)
8 return r

Figure 6.5: Pseudocode for square-and-multiply modular exponentiation

1 r := 1
2 for i := |e| − 1 downto 0 do
3 r := mpi sqr(r)
4 r := mpi mod(r, m)
5 tmp := mpi mul(b, r)
6 tmp := mpi mod(tmp , m)
7 if ei = 1 then
8 r := tmp
9 return r

Figure 6.6: Pseudocode for square-and-always-multiply modular exponentiation

In response to these attacks, libgcrypt 1.5.3 implements a countermeasure that
makes sure that the squaring operation is always performed, see Figure 6.6) for the
pseudocode. It is noticeable that this implementation still contains a conditional branch
that depends on the bits of the exponent in Line 7, namely the copy operation that selects
the outcome of both multiplication operations. However, this has been considered a

97

CHAPTER 6. RIGOROUS ANALYSIS OF SOFTWARE COUNTERMEASURES
AGAINST CACHE ATTACKS

minor problem because the branch is small and is expected to fit into the same cache
line as preceding and following code, or to be always loaded in cache due to speculative
execution [14]. In the following we apply the techniques developed in this chapter to
analyze whether the expectations on memory layout are met.

Observer address block b-block
I-Cache 1 bit 1 bit 1 bit

D-Cache 1 bit 1 bit 1 bit

(a) Square-and-multiply from
libgcrypt 1.5.2

Observer address block b-block
I-Cache 1 bit 1 bit 0 bit

D-Cache 0 bit 0 bit 0 bit

(b) Square-and-always-multiply from
libgcrypt 1.5.3

Figure 6.7: Leakage of modular exponentiation algorithms to observers of instruction
and data caches, with cache line size of 64 bytes and compiler optimization level -O2.

Observer address block b-block
I-Cache 1 bit 1 bit 1 bit

D-Cache 1 bit 1 bit 1 bit

Figure 6.8: Leakage of square-and-always-multiply from libgcrypt 1.5.3, with cache
line size of 32 bytes and compiler optimization level -O0.

Results The results of our analysis are given in Figure 6.7 and Figure 6.9
• Our analysis identifies a 1-bit data cache leak in square-and-multiply exponentia-

tion, see line 2 in Figure 6.7a, which is due to memory accesses in the conditional
branch in that implementation. Our analysis confirms that this data cache leak is
closed by square-and-always-multiply, see line 2 in Figure 6.7b
• Line 1 of Figures 6.7a and Figure 6.7b show that both implementations leak

through instruction cache to powerful adversaries who can see each access to
the instruction cache. However, for weaker, b-block observers that cannot distin-
guish between repeated accesses to a block, square-and-always-multiply does not
leak, confirming the intuition that the conditional copy operation is indeed less
problematic than the conditional multiplication.
• The data in Figure 6.8 demonstrates that the advantages of conditional copy

over conditional multiplication depend on details such as cache line size and
compilation strategy. Figure 6.9 illustrates this effect for the conditional copy
operation, where more aggressive compilation leads to more compact code that
fits into single cache lines. The same effect is observable for data caches, where
more aggressive compilation avoids data cache accesses altogether.

98

Chapter 6. Rigorous Analysis of Software Countermeasures against Cache Attacks

(a) Compiled with the default gcc optimization level -O2. Regardless whether
the jump is taken or not, first block 41a80 is accessed, followed by block
41aa0. This results in a 0-bit b-block leak.

(b) Compiled with gcc optimization level -O0. The memory block 5d060 is
only accessed when the jump is taken. This results in a 1-bit b-block leak.

Figure 6.9: Layout of libgcrypt 1.5.3 executables with 32-byte memory blocks (black
lines denote block boundaries). The highlighted code corresponds to the conditional
branching in lines 7–8 in Figure 6.6. The red region corresponds to the executed
instructions in the if-branch. The blue curve points to the jump target, where the jump
is taken if the if-condition does not hold.

6.6.4 Windowed Modular Exponentiation

In this section we analyze windowed algorithms for modular exponentiation. These
algorithms differ from algorithms based on square-and-multiply in that they process
multiple exponent bits in one shot. For this they commonly rely on tables filled with
precomputed powers of the base. For example, libgcrypt 1.6.1 precomputes 7 multi-
precision integers and handles the power 1 in a branch, see Figure 6.10. For moduli of
3072 bits, each precomputed value requires 384 bytes of storage, which amounts to 6-7
memory blocks in architectures with cache lines of 64 bytes. Key-dependent accesses
to those tables can be exploited for mounting cache side-channel attacks [146].

99

CHAPTER 6. RIGOROUS ANALYSIS OF SOFTWARE COUNTERMEASURES
AGAINST CACHE ATTACKS

if (e0 == 0) {

base_u = bp;

base_u_size = bsize;

} else {

base_u = b_2i3[e0 - 1];

base_u_size = b_2i3size[e0 - 1];

}

Figure 6.10: Sliding window table lookup from libgcrypt 1.6.1. Variable e0 represents
the window, right-shifted by 1. The lookup returns a pointer to the first limb of the
multi-precision integer in base u, and the number of limbs in base u size. The first
branch deals with powers of 1 by returning pointers to the base.

We consider three countermeasures, which are commonly deployed to defend against
this vulnerability. They have in common that they all copy the table entries instead of
returning a pointer to the entry.

1 // Retrieves r from p[k]
2 secure retrieve (r , p , k):
3 for i := 0 to n − 1 do
4 for j := 0 to N − 1 do
5 v := p[i][j]
6 s := (i == k)
7 r[j] := r[j] ˆ ((0 − s) & (r[j] ˆ v))

Figure 6.11: A defensive routine for array lookup with a constant sequence of memory
accesses, as implemented in libgcrypt 1.6.3.

• The first countermeasure ensures that in the copy process, a constant sequence of
memory locations is accessed, see Figure 6.11 for pseudocode. The expression
on line 7 ensures that only the k-th pre-computed value is actually copied to r.
This countermeasure is implemented, e.g. in NaCl and libgcrypt 1.6.3.

• The second countermeasure stores precomputed values in such a way that the
i-th byte of all precomputed values reside in the same memory block. This
ensures that when the precomputed values are retrieved, a constant sequence
of memory blocks will be accessed. This so-called scatter/gather technique is
described in detail in Section 6.2, with code in Fig 6.3, and is deployed, e.g. in
OpenSSL 1.0.2f.

• The third countermeasure is a variation of scatter/gather, and ensures that the
gather-procedure performs a constant sequence of memory accesses (see Fig-

100

Chapter 6. Rigorous Analysis of Software Countermeasures against Cache Attacks

ure 6.12). This countermeasure was recently introduced in OpenSSL 1.0.2g, as a
response to the CacheBleed attack [145].

1 defensive gather(r, buf, k)
2 for i:=0 to N−1 do
3 r[i] := 0
4 for j:= 0 to spacing − 1 do
5 v := buf[j + i*spacing]
6 s := (k == j)
7 r[i] := r[i] | (v & (0 − s))

Figure 6.12: A defensive implementation of gather (compare to Figure 6.3c) from
OpenSSL 1.0.2g.

Results Our analysis of the different versions of the table lookup yields the following
results:4

• Figure 6.13a shows the results of the analysis of the unprotected table lookup
of Figure 6.10. The leakage of one bit for most adversaries is explained by the
fact that they can observe which branch is taken. The layout of the conditional
branch is demonstrated in Figure 6.14a; lowering the optimization level results in
a different layout (see Figure 6.14b), and in this case our analysis shows that the
I-Cache b-block leak is eliminated.
• More powerful adversaries that can see the exact address can learn log2 7 = 2.8

bits per access. The static analysis is not precise enough to determine that the
lookups are correlated, hence it reports that at most 5.6 bits are leaked.
• Figure 6.13b shows that the defensive copying strategy from libgcrypt 1.6.3 (see

Figure 6.11) eliminates all leakage to the cache.
• Figure 6.13c shows that the scatter/gather copying-strategy eliminates leakage

for any adversary that can observe memory accesses at the granularity of memory
blocks, and this constitutes the first proof of security of this countermeasure. For
adversaries that can see the full address-trace, our analysis reports a 3 bit leakage
for each memory access, which is again accumulated over correlated lookups
because of imprecisions in the static analysis. Below we comment on these results
in the context of the recent CacheBleed attack.
• Figure 6.13d shows that defensive gather introduced OpenSSL 1.0.2g (see Fig-

ure 6.12) eliminates all leakage to cache.

4We note sliding window exponentiation exhibits further control-flow vulnerabilities, some of which
we also analyze. To avoid redundancy with Section 6.6.3, we focus the presentation of our results on the
lookup-table management.

101

CHAPTER 6. RIGOROUS ANALYSIS OF SOFTWARE COUNTERMEASURES
AGAINST CACHE ATTACKS

Observer address block b-block
I-Cache 1 bit 1 bit 1 bit

D-Cache 5.6 bit 2.3 bit 2.3 bit

(a) Instruction- and Data-Cache leakage of secret-dependent table lookup in
the modular exponentiation implementation from libgcrypt 1.6.1.

Observer address block b-block
I-Cache 0 bit 0 bit 0 bit

D-Cache 0 bit 0 bit 0 bit

(b) Instruction- and Data-Cache leakage of secret-dependent table lookup in
the patch on modular exponentiation from libgcrypt 1.6.3.

Observer address block b-block
I-Cache 0 bit 0 bit 0 bit

D-Cache 1152 bit 0 bit 0 bit

(c) Instruction- and Data-Cache leakage in the scatter/gather technique, ap-
plied to libgcrypt 1.6.1.

Observer address block b-block
I-Cache 0 bit 0 bit 0 bit

D-Cache 0 bit 0 bit 0 bit

(d) Instruction- and Data-Cache leakage in the defensive gather technique
from OpenSSL 1.0.2g, applied to libgcrypt 1.6.1.

Figure 6.13: Instruction and data cache leaks of different table lookup implementations.
Note that the leakage in Fig 6.13a accounts for copying a pointer, whereas the leakage
in Fig 6.13b and 6.13c refers to copying multi-precision integers.

102

Chapter 6. Rigorous Analysis of Software Countermeasures against Cache Attacks

(a) Compiled with the default gcc optimization level -O2. If the jump is
taken, first block 4b980, followed by block 4ba40, followed by 4b980 again.
If the branch is not taken, only block 4b980 is accessed.

(b) Compiled with gcc optimization level -O1. Regardless whether the jump
is taken or not, first block 47dc0 is accessed, followed by block 47e00.

Figure 6.14: Layout of executables using libgcrypt 1.6.1. The highlighted code corre-
sponds to a conditional branch. The blue region corresponds to the executed instructions
in the if-branch, and the red region corresponds to the executed instructions in the else-
branch. Curves represent jump targets.

The CacheBleed Attack The recently disclosed CacheBleed attack [145] against the
scatter/gather implementation from OpenSSL 1.0.2g exploits timing differences due
to cache-bank conflicts. Those are possible in CPUs where cache blocks are divided
into banks (e.g. Intel Sandy Bridge), to facilitate concurrent accesses to the data cache.
For example, the platform targeted in [145] has 16 banks of 4 bytes; there, bits 2–5
of an address are used to determine the bank, and bits 0–1 are used to determine the
offset within the bank. The distribution of the pre-computed values in scatter/gather
(see Section 6.2) to different banks will be as shown in Figure 6.15.

The leak leading to CacheBleed is visible in our data when comparing the results
of the analysis with respect to address-trace and block-trace adversaries, however, its

103

CHAPTER 6. RIGOROUS ANALYSIS OF SOFTWARE COUNTERMEASURES
AGAINST CACHE ATTACKS

severity may be over-estimated due to the powerful address-trace observer. For a more
accurate analysis of the effect of cache-bank conflicts, we define the bank-trace observer,
who cannot distinguish between the elements within a single bank. This observer is
weaker than the address-trace observer, but stronger than the block-trace observer.

We perform the analysis of the scatter/gather implementation (see Figure 6.13c) for
the bank-trace D-cache observer. The analysis results in 384-bit leak, which corresponds
to one bit leak per memory access, accumulated for each accessed byte due to analysis
imprecision (see above). The one bit leak in the i-th memory access is explained by the
ability of this observer to distinguish between the two banks within which the i-th byte
of all pre-computed values fall.

Figure 6.15: Layout of pre-computed values in cache banks, for a platform with 16
banks of 4-bytes. The cells of the grid represent the cache banks.

6.6.5 Discussion

A number of comments are in order when interpreting the bounds delivered by our
analysis.

Use of Upper Bounds The results we obtain are upper bounds on the leaked infor-
mation that are not necessarily tight, that is, they may be pessimistic. This means
that while results of zero leakage corresponds to a proof of absence of leaks, positive
leakage bounds do not correspond to proofs of the presence of leaks, that is, leaks may
be smaller than what is reported by the analysis. The reason for this is that the amount
of leaked information may be over-estimated due to imprecisions of the static analysis,
as is the case with the D-Cache leak shown on Figure 6.13c.

Practical Detectability of Leaks A reported leak may be practically easier to detect
by an adversary in cases where the vulnerable code region produces more cache accesses.
This is the case for the control-flow leaks in square-and-multiply, where the vulnerable
if-branch includes multiplication and modulo-functions, practically resulting in ≈ 2 ·105

cache accesses. In contrast, the vulnerable if-branch in square-and-always-multiply
does not include function calls, practically resulting in a small number of cache accesses,
which may be more difficult to detect from noisy observations.

104

Chapter 6. Rigorous Analysis of Software Countermeasures against Cache Attacks

algorithm square and multiply sliding window

countermeasure (CM) no CM always no CM scatter/ access all defensive
multiply gather bytes gather

original implementation libgcrypt libgcrypt libgcrypt openssl libgcrypt openssl
1.5.2 1.5.3 1.6.1 1.0.2f 1.6.3 1.0.2g

instructions (×106) 90.32 120.62 73.99 74.21 74.61 75.29
cycles (×106) 75.58 100.73 61.58 61.65 62.20 62.28

Figure 6.16: Performance of the different versions of modular exponentiation, imple-
mented on top of libgcrypt 1.6.3.

6.6.6 Performance

We conclude the case study by considering the effect of the different countermeasures
on the performance of modular exponentiation. For this, we use libgcrypt 1.6.3 as a
base, and we compile it with the respective mod exp.c, corresponding to each of the
considered variants. For performance measurement, we use the time for performing
exponentiations on a sample of random bases and exponents, and measure the clock
count (through the rdtsc instruction), as well as the number of performed instructions
(through the PAPI library). We follow the approach for performance measurement
from [147], performing 100,000 exponentiations with exponents, after a warm-up
period of 25,000 exponentiations, and take the minimum over 5 repeated experiments
to minimize the noise of background processes. The measurements are performed on
a machine with an Intel Q9550 CPU. This architecture does not feature more recent
performance-enhancing technologies such as Turbo-Boost Technology and Hyper-
Threading Technology.

Figure 6.16 summarizes our measurements. The results show that the applied coun-
termeasure for square and multiply causes a significant slow-down of the exponentiation.
A slow-down is observed with sliding-window countermeasures as well, however at a
much lower scale.5 Notable is also the performance gain from using the sliding-window
algorithm compared to square-and-multiply.

6.7 Related Work

Agat proposes a program transformation for removing control-flow timing leaks by
equalizing branches of conditionals with secret guards [143], with follow-up work
in [148, 149]. In an accompanying technical report [150] Agat presents the implemen-
tation of the transformation in Java bytecode, which includes an informal discussion
of the effect of instruction and data caches on the security of the transformation. Our

5We note that performance penalties of countermeasures can be higher when considering a whole
cryptographic operation, different platforms, implementations within other crypto libraries, different
key sizes. For example, in commit messages prior to OpenSSL 1.0.2g’s release, developers report
performance penalties of up to 10% for 2048-bit RSA on some platforms.

105

CHAPTER 6. RIGOROUS ANALYSIS OF SOFTWARE COUNTERMEASURES
AGAINST CACHE ATTACKS

approach relies on lower-level models, namely x86 executables and simple but accurate
cache models, based on which we can prove the security of cache-aware programming.

Molnar et al. [142] propose a program transformation that eliminates branches
on secret to remove leaks due to control flow and instruction caches, together with
a static check for the resulting x86 executables. Our approach is more permissive
than theirs that it can establish the security of code that contains restricted forms of
secret-dependent control flow and memory access patterns. It is worth emphasizing
that the increased permissiveness of our approach comes from the fact that we rely on
models of the hardware architecture for our analysis. If no such models are available,
the safe way to go is to forbid all kinds of secret-dependent behavior.

Coppens et al. [114] investigate mitigations for timing-based side-channels on x86
architecture, and they identify new side-channels in programs without secret-dependent
memory lookups due to out-of-order execution. In contrast, we prove the security of
countermeasures. For this we rely on accurate models of caches, but we do not take
into account out-of-order execution.

Bernstein et al. advocate defensive programming [31] that avoids all secret-
dependent memory lookups and branching and demonstrate the practicality of their
proposal with NaCl. Almeida et al. develop a static analyzer that can automatically
confirm that programs follow that regime [86]. Barthe et al. [87] establish that adhering
to that policy provides security against very strong adversary models.

Langley [151] shows how to perform a dynamic analysis based on Valgrind and
memcheck. His technique flags the secret-dependent (but cache-line independent)
memory lookups of the OpenSSL sliding window-based modular exponentiation as
a potential leak. Our technique gives more fine-grained insights about its security,
including proofs of security for adversaries that can observe memory accesses only at
the granularity of memory blocks.

6.8 Conclusions
In this chapter we devise novel techniques that provide support for bit-level and arith-
metic reasoning about pointers in the presence of dynamic memory allocation. These
techniques enable us to perform the first rigorous analysis of widely deployed software
countermeasures against cache attacks on modular exponentiation, based on executable
code.

106

Part III

Web-Traffic Attack Protection

107

The third part of this thesis develops a framework for the derivation of formal
guarantees against side-channels in web traffic. We propose a model that captures
important characteristics of web traffic, and we define measures of security based on
quantitative information flow. We propose novel techniques for the efficient derivation
of security guarantees for web applications. The key novelty of those techniques is
that they provides guarantees that cover all execution paths in a web application, i.e. it
achieves completeness. We demonstrate the utility of our techniques in two case studies,
where we derive formal guarantees for the security of a medium-sized regional-language
Wikipedia and an auto-complete input field.

The work presented in this chapter provides the first scalable approach for formal
quantification of web traffic leaks, and addresses research question 2 (Q2) in Section 1.2.
The models presented in Sections 7.2 and 7.3.1 were initially developed in the author’s
Master thesis [48].

109

110

7
Automatic Evaluation of Protections against Web

Side-Channels

7.1 Introduction
Internet traffic is exposed to potential eavesdroppers. To limit disclosure of secret
information, security-aware users can protect their traffic by accessing web services
that offer TLS encryption, or by sending their data through encrypted tunnels. While
today’s encryption mechanisms hide the secret payload from unauthorized parties, they
cannot hide lower-level traffic features such as packet sizes, numbers, and delays. These
features contain information about the payload that can be extracted by traffic profiling,
side-stepping the protection offered by cryptography. The relevance of this threat is
demonstrated by a large number of side-channel attacks against encrypted web traffic,
e.g. [4, 16, 17, 152, 153, 154, 155, 156, 157, 158].

A number of approaches for the mitigation and analysis of side-channel leaks have
been proposed, e.g. [23, 24, 152, 154]. A common pattern in these approaches is the
following relationship between attacks, countermeasures, and their security analysis:
An attack corresponds to a classification of a sample of network traffic, where classes
correspond to secret aspects of user behavior. A correct classification corresponds to a
successful attack, i.e. one in which the secret is correctly recovered. A countermeasure
modifies the shape of the network traffic with the goal of making the classification of
samples more difficult or even impossible. A security analysis is based on an evaluation
of the performance of a particular classification algorithm.

A security analysis following this pattern enables one to assess a system’s vulnerabil-
ity to a particular classifier; however, the analysis does not make immediate assertions
about the vulnerability to attackers using more sophisticated techniques for mining their
observations. This limitation is not only unsatisfactory from a theoretical viewpoint,
but it also raises significant problems in practice: A recent comprehensive study [159]
of traffic analysis countermeasures exhibits that the incompleteness of existing security
analyses indeed leaves room for highly effective attacks. It is clear that, ultimately, one
strives for security guarantees that hold for all realistic adversaries who can observe the

111

CHAPTER 7. AUTOMATIC EVALUATION OF PROTECTIONS AGAINST WEB
SIDE-CHANNELS

web application’s traffic, i.e. formally backed-up security guarantees.
There are two key challenges in deriving formal guarantees against side-channel

attacks against web traffic. The first challenge is to devise a mathematical model of the
web application’s traffic, which is indispensable for expressing and deriving security
guarantees. Such a model has to be accurate enough to encompass all relevant traffic
features, and at the same time, the model must be simplistic enough to allow for tractable
reasoning about realistic web applications.

The second challenge is to develop techniques for the computation of security
guarantees for a given web application. The main obstacle is that the derivation of
security guarantees requires considering all execution paths of a web application. As
the number of paths may grow exponentially with their length, their naive enumeration
is computationally infeasible. Previous approaches deal with this problem by resorting
to a subset of the possible execution paths [160, 161], introducing incompleteness into
the analysis.

In this chapter, we develop a novel framework for the derivation of formal guarantees
against traffic side-channels in web applications. We first provide a model that captures
the effect of user actions on web-traffic. In particular, we cast web applications as
labeled, directed graphs where vertices correspond to the states of the web application,
edges correspond to possible user actions, and (vertex) labels are observable features
of encrypted traffic induced by moving to the corresponding state. These features can
include packet sizes and numbers, and their source and destinations, which is sufficient
to encompass relevant examples.

We then interpret this graph as an information-theoretic channel mapping sequences
of (secret) user actions to (public) traffic observations. Casting the graph as a channel
allows us to apply established measures of confidentiality (Shannon entropy, min-
entropy, g-leakage) from quantitative information-flow analysis and make use of their
well-understood properties. Leveraging those properties, we obtain the following
results.

To put our model into action, we propose a novel technique for the efficient derivation
of security guarantees for web applications. The key advantage of this technique is that
it allows considering all execution paths of the web application, which is fundamental
for deriving formal security guarantees. We achieve this result for the important special
case of a user following the random surfer model [162] and for Shannon entropy as
a measure: As a first step, we use PageRank to compute the stationary distribution of
a random surfer, which we take as the a priori probability of a user visiting a vertex.
As a second step, we apply the chain rule of entropy to reduce the computation of the
uncertainty about a path of length ` to that about path of length ` − 1, and transitively to
that about a single transition. As computing the uncertainty about a single transition
can be done efficiently, this is the key to avoiding the enumeration of all (exponentially
many) paths.

We use this algorithm to study the trade-off between security and performance (in
terms of overhead) of different countermeasures. A key observation is that countermea-
sures based on making individual vertices indistinguishable (e.g. [23]) fail to protect

112

Chapter 7. Automatic Evaluation of Protections against Web Side-Channels

paths of vertices. To ensure protection of paths, we devise path-aware countermeasures,
which strengthen countermeasures for vertices by making sure that indistinguishable
vertices also have indistinguishable sets of successors. Formally, we achieve this by
coarsening indistinguishability on vertices to a probabilistic bisimulation relation, which
we compute using a novel algorithm based on randomization and partition refinement.

We demonstrate the applicability of the proposed techniques in two case studies,
where we analyze the traffic of (1) a regional-language Wikipedia consisting of 5,000
articles, and that of (2) an auto-complete input field for a dictionary of 1,100 medical
terms. Our approach delivers a number of countermeasures that provide different trade-
offs between security guarantees and traffic overhead, spreading from good security at
the price of a high overhead, to low overhead at the price of lower security guarantees.

In summary, our main contribution is algorithms and techniques that enable the
efficient derivation of such guarantees for real systems. We demonstrate how they
can be used for adjusting the trade-off between security and performance of practical
instances of web applications.

7.2 Web-Traffic as an Information-Theoretic Channel
In this section, we cast web-traffic as an information-theoretic channel (i.e. a conditional
probability distribution) from user input to observable traffic patterns. We specify the
threat scenario in Section 7.2.1 and present our basic model of web applications and
their traffic in Section 7.2.2.

7.2.1 Threat Scenario
The threat scenario we are considering is a user performing confidential actions (such as
following hyperlinks, or typing characters) in a web application, and a passive attacker
who inspects network traffic and wants to obtain information about the user’s actions.
and

When a user performs an action on the web application, this causes messages (which
we call web-objects) to be exchanged between the client- and the server-side of the web
application, and the attacker observes bursts of network packets corresponding to each
web-object. Traffic is protected by encrypting the data at a certain layer of the protocol
stack. Commonly used protection mechanisms are HTTPS, an encrypted connection
to proxies (e.g. an SSH tunnel), and encryption of wireless traffic (e.g. using WPA2).
Depending on the used protection mechanism, attackers will have a different view of
the traffic, as illustrated in Figure 7.1.

7.2.2 Basic Model
We model the network traffic corresponding to a web application using a directed labeled
graph. In this graph, vertices correspond to the states of the web application, edges

113

CHAPTER 7. AUTOMATIC EVALUATION OF PROTECTIONS AGAINST WEB
SIDE-CHANNELS

(a) An Ethernet frame without encryption

(b) An Ethernet frame with HTTPS encryption

(c) An Ethernet frame with an encrypted tunnel to a proxy server

(d) A WLAN frame with WPA2 encryption

Figure 7.1: Encrypted packets with commonly used protection mechanisms. When
HTTPS is applied (Figure 7.1b), the attacker may use the information contained in
the TCP header to reassemble the packets and infer the approximate size of the web-
object. When traffic is forced through an SSH tunnel (Figure 7.1c) and when using an
encrypted wireless connection (Figure 7.1d), the original headers are encrypted and
direct reassembly is not possible any more.

114

Chapter 7. Automatic Evaluation of Protections against Web Side-Channels

correspond to possible user actions, and vertex labels correspond to induced traffic
patterns.

Definition 10. A web application is a directed graph G = (V, E), together with an
application fingerprint fapp : V → o that maps vertices to observations o ⊆ (A × {↑, ↓})∗,
where A is the set of observable objects. We denote the set of paths in G by Paths(G).

An application fingerprint of a vertex is intended to capture an eavesdropper’s view
of transmitted packets, requests and responses, which necessarily includes the packets’
directions. If traffic is not encrypted, we set the observable objects to be bit-strings, i.e.
A = {0, 1}∗. If (a part of) an object is encrypted, only its size remains visible, i.e., we
assume that encryption is perfect and length-preserving. Formally, encryption is defined
as a function enc : {0, 1}∗ → N, and if all objects are encrypted, then we set A = N.

For example, a sequence (10, ↑), (10, ↑), (20, ↓), (32, ↓) captures an exchange of
encrypted objects, two of size 10 sent from the client to the server, and two of size 20
and 32, respectively, sent from the server to the client.

We next show how Definition 10 can be instantiated to capture two representative
scenarios, which we use as running examples throughout the chapter. The first scenario
models web navigation, where user actions correspond to following hyperlinks. The
second scenario models an auto-complete form, where user actions correspond to typing
characters into an input field. For ease of presentation, in the following examples we
cast the states of a web application as the requested web-objects, and assume that all
objects are encrypted.

Example 9. Consider a user who is navigating the Web by following hyperlinks. The
web application is a web-graph G = (V, E) , where each vertex v = (w1,w2,w3, . . .) is a
sequence of web-objects, i.e V ⊆ W∗ for a set W of web-objects. For example, we may
have a vertex v = (a.html, style.css, script.js, image.jpg, video.flv), which corresponds
to a particular webpage. An edge (u, v) models that the webpage v can be reached from
webpage u by following a hyperlink. If we additionally allow users to jump to arbitrary
webpages, the resulting graph will be complete. For the definition of the application
fingerprint fapp, let the size of a web-request corresponding to a web-object, and the
size of the web-object be given as functions r : W → N and s : W → N, respectively.
Then, the application fingerprint of a webpage v = (w1, . . . ,wn) is given by

fapp(v) = ((r(w1), ↑), (s(w1), ↓), . . . , (r(wn), ↑), (s(wn), ↓)) .

Example 10. Consider an auto-complete input field where, after each typed character,
a list of suggestions is generated by the server and displayed to the user (see Figure 7.2).
Let Σ be the input alphabet (i.e. the set of possible user actions) and Σ∗ the set of
possible words. We define the corresponding web application as a graph G = (V, E)
with V = Σ∗, the root r = ε is the empty word, and (u, v) ∈ E if and only if v = uσ,
for some σ ∈ Σ. Note that G is in fact a prefix tree [163], and the leafs of the tree
form the input dictionary D ⊆ Σ∗. Let the auto-complete functionality be implemented
by a function suggest : V → S ∗ returning a list of suggestions from the dictionary of

115

CHAPTER 7. AUTOMATIC EVALUATION OF PROTECTIONS AGAINST WEB
SIDE-CHANNELS

possible suggestions S ⊆ Σ∗. Let the sizes of a suggestion request and the corresponding
suggestion list be given as functions r : V → N and s : S ∗ → N, respectively. Then,
given a word v ∈ V, we define its application fingerprint as

fapp(v) = ((r(v), ↑), (s(suggest(v)), ↓)).

Figure 7.2: An auto-complete input field

To capture modifications of observations when traffic passes through different
network protocols, as well as the effect of (potentially randomized) countermeasures,
we introduce the notion of a network fingerprint.

Definition 11. A network fingerprint is a function

fnet : o→ (o→ [0, 1]),

such that for each o ∈ o,
∑

o′∈o fnet(o)(o′) = 1.

A network fingerprint fnet(o)(o′) models the conditional probability of outputting
a burst of network packets o′, given as input a burst of network packets o. We cast
network fingerprints using function notation because this allows for a clean combination
with application fingerprints.

We now show how the combination of the web application with the network fin-
gerprint fnet can be cast as an information-theoretic channel mapping execution paths
Paths(G) to sequences of network observations o∗.

Definition 12. Let G be a web application with fingerprints fapp and fnet. Let X be a
random variable with ran(()X) = Paths(G), and Y a random variable with ran(()Y) = o∗.
Then the traffic channel induced by (G, fapp, fnet) is the conditional distribution

P[Y = o1 . . . o`|X = v1 . . . v`] =
∏̀
i=1

fnet(fapp(vi))(oi)

116

Chapter 7. Automatic Evaluation of Protections against Web Side-Channels

With Definition 12, we make two implicit assumptions: First, we assume that
when a user traverses a path of length ` in a web application, the attacker can see a
sequence o1, . . . , o` ∈ o` of sequences of packet sizes and directions. This corresponds
to an attacker that can distinguish between bursts of traffic corresponding to different
vertices, but that cannot observe the timing of the packets. Second, by multiplying
the probabilities of observations, we assume that the network bursts corresponding to
individual vertices are pairwise independent. Note that this assumption can be weakened
by conditioning on multiple vertices, which we forgo for simplicity of presentation.
Finally, note that Definition 12 does not make any assumptions on the distribution of X,
which models the user’s behavior. We will only make such assumptions in Section 7.3,
where we need them for the algorithmic derivation of security guarantees.

7.3 Algorithms for Practical Evaluation of Web Appli-
cations

In this section we devise techniques for the derivation of absolute security guarantees,
i.e. concrete numbers for the remaining uncertaintyH(X|Y) about the user input. For
this, two challenges need to be addressed.

The first is that the derivation of absolute guarantees requires making assumptions
about (the attacker’s initial uncertaintyH(X) about) the user’s behavior. The second
is that the direct computation of H(X|Y) requires enumerating the values of X (i.e.
all paths) and Y (i.e. all possible traffic patterns), which quickly becomes infeasible.
In this section we present algorithms that enable the efficient computation of formal
security guarantees. Our algorithms assume Markov models of user behavior and rely
on the chain rule of entropy, which is only satisfied by Shannon entropy H(X). As a
consequence, their application is restricted to scenarios where such assumptions can be
justified and where guarantees based on Shannon entropy (see Chapter 2) are adequate.

We begin by showing how, under these assumptions, the initial uncertainty about a
user’s navigation in a website can be computed. We then present a generic approach for
constructing countermeasures based on bisimulations and for computing the uncertainty
induced by such countermeasures.

7.3.1 Modeling User Behavior as a Markov chain

We capture user behavior by a random variable X, where P[X = (v1, . . . , v`)] describes
the probability of the user taking execution path (v1, . . . , v`), see Section 7.2. The
random variable X can be decomposed into the components X1, . . . , X` corresponding
to the vertices on the path. When the user’s choice of the next vertex depends only on
the currently visited vertex, then X1, . . . , X` form a Markov chain. Formally: P[Xi+1 =

117

CHAPTER 7. AUTOMATIC EVALUATION OF PROTECTIONS AGAINST WEB
SIDE-CHANNELS

vi+1|Xi = vi, . . . , X1 = v1] = P[Xi+1 = vi+1|Xi = vi] for i ∈ {1, . . . , ` − 1}. Then, we obtain

P[X = (v1, . . . , v`)] = P[X1 = v1]
`−1∏
i=1

P[Xi+1 = vi+1|Xi = vi] .

This decomposition enables one to specify the probability of execution paths in terms
of probabilities of individual transitions. The Markov property is clearly valid in the
auto-complete input fields from Example 10 where the execution paths form a tree,
and it also is a commonly made assumption for predicting navigation behavior of
users [164, 165].

7.3.2 Computing the Initial Uncertainty
We next devise an algorithm for computing the initial uncertainty H(X) about the
behavior of a user, based on the stationary distribution of X and the chain rule of entropy.
We then show how X can be instantiated and how its stationary distribution can be
computed using the PageRank algorithm.

7.3.2.1 Initial Uncertainty Based on Stationary Distributions

From the Fundamental theorem of Markov chains [166] it follows that each finite,
irreducible, and aperiodic Markov chain converges to a unique stationary distribution.
Formally, if the Markov chain is given in terms of a transition matrix Q, where qi, j

denotes the probability of moving from vi to v j, there is a row vector (the stationary
distribution) π with π = πQ.

Under the above conditions, the user’s choice of a next vertex will converge to π,
which we use to capture the probability of the user choosing the first vertex P[X1 = v1].
The following theorem gives a handle on efficiently computing the initial uncertainty
about the user’s execution path.

Theorem 9. Let X1, . . . , X` be a Markov chain with P[X1] = π, where π is the stationary
distribution. Then,

H(X1, . . . , X`) = H(X1) + (` − 1)H(X2|X1).

Proof.
H(X1, . . . , X`)

(∗)
= H(X`|X`−1, . . . , X1) + · · · + H(X2|X1) + H(X1)

(∗∗)
= H(X`|X`−1) + H(X`−1|X`−2) + · · · + H(X2|X1) + H(X1)

Here (∗) follows from the chain rule for Shannon entropy and (∗∗) follows from
the Markov property. As P[X1] is the stationary distribution, we have H(Xk|Xk−1) =

H(X j|X j−1) for all j, k ∈ {2, . . . , n}, which concludes the proof. �

118

Chapter 7. Automatic Evaluation of Protections against Web Side-Channels

Given the stationary distribution, Theorem 9 enables the computation of the initial
uncertainty H(X) about the user’s navigation in time O(|V |2), for any fixed `. We
next show how the Markov chain representation of X can be instantiated, and how its
stationary distribution can be obtained, using the PageRank algorithm.

7.3.2.2 Using PageRank for Practical Computation of the Initial Uncertainty

PageRank [162] is a link analysis algorithm that has been applied for predicting user
behavior in web usage mining [165]. It relies on the random surfer model, which
captures a user who either follows a link on the currently visited webpage, or jumps to
a random webpage.

Formally, the probability of following links is given by a transition matrix Q′, and
the probability of random jumping is 1 − α, where the damping factor α ∈ [0, 1]
is usually set to 0.85. The user’s behavior is then captured by the transition matrix
Q = αQ′ + (1 − α)p111 , where p is a row vector representing the probability of jumping
to pages, and 111 is the column vector with all 1 entries. One typically assumes uniform
distributions for the rows q′i of Q′ and for p, however the probabilities can also be biased
according to additional knowledge, e.g. obtained by mining usage logs [167].

Given a transition matrix Q of a website, the PageRank algorithm computes the
corresponding stationary distribution π, and πi is called the PageRank of a webpage i.
Notice that the conditions for the existence of π are usually fulfilled: irreducibility is
guaranteed by a damping factor α < 1, and in practice websites are aperiodic.

7.3.3 Constructing Path-Aware Countermeasures

Most traffic analysis countermeasures aim to provide protection by making multiple
states of a web-application indistinguishable for an attacker who can only observe
their traffic fingerprints (e.g. see [23]). In our model, we say that two vertices v1

and v2 are (f)-indistinguishable for some countermeasure f whenever f (v1) = f (v2),
i.e. the observations produced by v1 and v2 have the same probability distribution.
Clearly, f -indistinguishability induces a partition P = {B1, . . . , Bm} on the state space
V of a web-application, where the blocks Bi correspond to the equivalence classes of
f -indistinguishability.

Unfortunately, indistinguishability of individual states does not protect information
gained by observing a sequence of states. Consider, e.g., a scenario where an attacker
observes traffic produced by typing a word in English. Assume that the first typed
character is known to be t and the second character is either h or s, which we assume to
be f -indistinguishable. From the first action t, the attacker can deduce that the second
user action is most likely h, i.e. secret information is revealed.

119

CHAPTER 7. AUTOMATIC EVALUATION OF PROTECTIONS AGAINST WEB
SIDE-CHANNELS

7.3.3.1 Ensuring Indistinguishability of Paths

To protect the information contained in the transition between states, we devise path-
aware countermeasures, which require that the induced partition be in fact a bisimula-
tion [168] (also called lumping [169]), a property that ensures behavioral equivalence
of states.

Definition 13. A partition P = {B1, . . . , Bm} of the state space V of a Markov chain
X = (X1, . . . , X`) is a (probabilistic) bisimulation if for any blocks Bi, B j ∈ P and for
any vi, vh ∈ Bi,

∑
v j∈B j

qi, j =
∑

v j∈B j
qh, j. We define the corresponding quotient process

Y = (Y1, . . . ,Y`) as the random variable with state space P, such that Yk = Bi iff Xk = v
and v ∈ Bi.

A fundamental characteristic of bisimulations is that they preserve the Markov
property of the resulting quotient process.

Theorem 10 (Kemeny-Snell [169]). A partition of the state space of a Markov chain is
a probabilistic bisimulation iff the corresponding quotient process is a Markov chain.

To measure the strength of a path-aware countermeasure, we need to calculate the
remaining uncertainty H(X|Y), for which we have

H(X|Y) ≥ H(X) − H(Y), (7.1)

with equality whenever Y is determined by X (e.g., if the corresponding countermeasure
is deterministic). By Theorem 10, the resulting quotient process Y is a Markov chain.
This enables us to use Theorem 9 for computing H(Y), leading to an efficient algorithm
returning a lower bound for H(X|Y).

7.3.3.2 Implementing Path-Aware Countermeasures

For a given countermeasure f , we seek to group together vertices in V to blocks
of indistinguishable vertices, such that the resulting partition is path-aware, i.e. a
bisimulation. This could be trivially achieved by padding all possible observations to
a maximal element o∗. While the corresponding (1-block) partition achieves maximal
security, it may also induce an unacceptably large traffic overhead. Our goal is hence
to find a bisimulation that coarsens the partition induced by f and that offers a more
attractive trade-off between security and performance.

While there are efficient algorithms for computing bisimulations that refine a given
partition to a bisimulation, we are not aware of existing algorithms for obtaining
bisimulations by coarsening. We tackle the problem by the following two-step approach.

In a first step, we compute a set of random bisimulations on V . To achieve this, we
select random initial partitions of V with only two blocks, e.g. by flipping a coin for
each vertex and selecting a block accordingly. For each of those two-block partitions,
we compute the coarsest bisimulation that refines it using the efficient algorithm by

120

Chapter 7. Automatic Evaluation of Protections against Web Side-Channels

Derisavi et al. [170], which we call CoarsestBisimulation in the remainder of this
chapter.

In a second step, we coarsen the partition given by f to the partition P = {B1, . . . , Bm}

given by each bisimulation computed in the previous step. We achieve this by modifying
f to a new countermeasure that is a constant function on each Bi. We consider two such
modifications:

1. The first countermeasure, which we call flimit, returns for each vertex v ∈ Bi the
maximum over all vertices w ∈ Bi of the sum of the sizes of the observable objects
for each countermeasure flimit(v) = maxw∈Bi

∑
i |oi,w| ,where f (w) = (o1,w, . . . , ot,w).

If observations consist of one object each, flimit can be implemented by padding.
If observations consist of multiple objects, an implementation may not be possible
without additional overhead, and thus flimit is a theoretical concept representing
the smallest possible size that can be achieved without losing information about
f , and hence represents a lower limit for the cost required by any countermeasure
inducing a partition {B1, . . . , Bm}.

2. The second countermeasure, which we call forder, first orders for each vertex
v ∈ Bi the components in f (v) according to their (descending) size, and then pads
the k-th component to the maximum size of the k-th components over all w ∈ Bi.

In our experiments in Section 7.4, we demonstrate the overhead induced by the
practical forder, as well as by the cost-limiting flimit countermeasures. The results show
that there is room for designing more cost-effective countermeasures, which induce an
overhead closer to flimit; for this to be achieved, further basic countermeasures can be
utilized, e.g. splitting of objects.

7.4 Case Studies

In this section we report on two case studies in which we apply the approach presented
in this chapter to evaluate the security of countermeasures for a website and an auto-
complete field. Moreover, we analyze the overhead in traffic induced by instantiations of
the countermeasure to different strengths, which gives a formal account of the ubiquitous
trade-off between security and performance in side-channel analysis.

7.4.1 Web Navigation

We analyze a web navigation scenario as described Example 9. As target we use the
Bavarian-language Wikipedia1 of more than 5,000 articles. We instantiate user models
and network fingerprints as follows.

1http://bar.wikipedia.org

121

http://bar.wikipedia.org

CHAPTER 7. AUTOMATIC EVALUATION OF PROTECTIONS AGAINST WEB
SIDE-CHANNELS

User model We assume the random surfer model (see Section 7.3.2), where a user
is navigating through Wikipedia articles. To instantiate the web-graph G, we crawled
the website only following links leading to the Wikipedia article namespace, where
the crawling was performed using a customized wget2. Excluding redirect pages, we
obtained a graph with 3,496 vertices.

Application fingerprint For each vertex v, we took the application fingerprint fapp(v)
to be the tuple containing the size of the source .html file and the sizes of the contained
image files. On average, the total size of each vertex was 104 kilobytes, with a standard
deviation of 85 kilobytes. Taking sizes of web-objects instead of sizes of packets is
a safe approximation whenever encryption happens at the object-level. We did not
account for the sizes of requests because they are almost of equal size in our example,
and padding them to a uniform constant size is cheap.

Results without countermeasure We compute the initial uncertainty H(X) about the
user’s navigation using Theorem 9, where we obtain the stationary distribution of the
user’s starting point using PageRank, as described in Section 7.3.2. The first row in
Figure 7.3 gives the values of H(X) for varying path lengths `. An interpretation of the
data in the sense of Proposition 1 shows that for ` = 5 we already obtain a lower bound
of around 230 for the expected number of guesses to determine the correct execution path.
For the corresponding sequence of network fingerprints Y (without any countermeasure
applied) and ` > 1, we consistently obtain a remaining uncertainty H(X|Y) of 0. This
follows because in our example almost every page is determined by its fingerprint, and
whenever there is ambiguity, the page can be recovered from observing the path on
which it occurs. Also note that a naive computation of H(X) quickly becomes infeasible,
because the number of paths is |V |`, due to the completeness of the graph induced by
the random surfer model.

` 1 3 5 9 15 25 40
H(X) 10.1 21 31.8 53.4 85.9 139.9 221

paths 3496 236.5 259.8 2106 2176 2295 2472

Figure 7.3: Web navigation: the initial uncertainty H(X) about the user’s navigation
in the regional-language Wikipedia for a varying path length `. # paths denotes the
number of execution paths.

Results with countermeasure As described in Section 7.3.3, we obtain a number of
path-aware countermeasures by refining randomly chosen initial partitions. For each of
them, we evaluate the effect on security and performance: (1) we compute the remaining
uncertainty H(X|Y) using Equation 7.1 and Theorem 9; (2) we compute the relative

2http://www.gnu.org/software/wget/

122

http://www.gnu.org/software/wget/

Chapter 7. Automatic Evaluation of Protections against Web Side-Channels

expected overhead of a countermeasure fnet as Ev[| fnet(v)|−
∣∣∣ fapp(v)

∣∣∣]/Ev[
∣∣∣ fapp(v)

∣∣∣], where
|·| denotes the size of the payload, i.e. the sum of the number of bytes used for the
individual observations. The results below are obtained for paths of length ` = 5 and
the practical forder and cost-limiting flimit countermeasures (see Section 7.3.3).

As reference point we use the countermeasure that makes all states indistinguishable
and induces maximal security, i.e. H(X|Y) = H(X). On this countermeasure, forder

produces a relative expected overhead of 73.5, while flimit produces a relative expected
overhead of 9.7. Trading security for performance, we randomly chose 500 initial parti-
tions, and refined them to path-aware countermeasures using CoarsestBisimulation
(see Section 7.3.3). The remaining uncertainty and the relative expected overhead for
each of those countermeasures are depicted in Figure 7.4a (for forder), and Figure 7.4b
(for flimit). The results spread from partitions delivering strong security at the price of a
high overhead, to smaller overhead at the price of weaker security.

(a) Results with the forder countermeasure

(b) Results with the flimit countermeasure

Figure 7.4: Web navigation: the remaining uncertainty H(X|Y) about the user’s naviga-
tion in the regional-language Wikipedia versus the relative expected overhead, using the
flimit and forder countermeasures, for 500 randomly chosen initial partitions. Red stars
represent favored resulting partitions, i.e. resulting in a better security-versus-overhead
trade-off than close-by points.

Figure 7.5 details on 8 of the 500 computed bisimulation partitions. The first and the
last lines present the trivial coarsest and finest partitions, respectively. The data shows

123

CHAPTER 7. AUTOMATIC EVALUATION OF PROTECTIONS AGAINST WEB
SIDE-CHANNELS

that, when performance is mandatory, one can still achieve 6.63 bits of uncertainty
(corresponding a lower bound of 25 expected guesses, according to Proposition 1)
with an overhead of factor 2.75. On the other hand, stronger security guarantees come
at the price of overhead of more than factor 10. The high required overheads in the
web-navigation scenario can be explained by the large diversity of the sizes and numbers
of the web-objects in the studied pages. As the next case study shows, the required
overheads are much lower for web applications with more homogeneous web-objects.

H(X|Y) overhead overhead
forder flimit

31.77 73.47 9.71
26.7 40.01 7.83
24.4 25.68 5.86
16.35 13.29 5.11
12.32 7.31 4.11
9.35 5.04 3.18
6.63 2.78 1.97

0 0 0

Figure 7.5: Web navigation: the remaining uncertainty H(X|Y) about the user’s naviga-
tion and the relative expected overhead for 8 selected bisimulation partitions.

7.4.2 Auto-Complete Input Field

We analyze the scenario of an auto-complete input field as described in Example 10.
Unlike graphs corresponding to websites, the graph corresponding to an auto-complete
field is a tree with a designated root and a small number of paths. This allows us to
compute the remaining uncertainty by enumerating the paths in the tree, which is why
we can also consider min-entropy H∞. In this case study, we instantiate user models
and network fingerprints as follows.

User model As described in Section 7.3.1, user behavior is characterized by a prob-
ability distribution P[X = (v1, . . . , v`)] of possible paths of length `, which for auto-
complete input fields corresponds to the set of words of length `. To obtain such a
distribution, we take as an input dictionary D the 1,183 hyponyms of (i.e., terms in an
is-a relationship with) the word “illness”, contained in the WordNet English lexical
database [171]. We use the number of results of a corresponding Google query as
an approximation of the probability for each term in the dictionary: We issue such
queries for all 1,183 words in the dictionary D and count their relative frequencies,
thereby establishing probabilities for the leaves in the prefix tree corresponding to D.
We traverse the tree towards the root, instantiating the probability of each vertex as
the sum of the probabilities of its children. Then we instantiate the probabilities of

124

Chapter 7. Automatic Evaluation of Protections against Web Side-Channels

the outgoing edges of each vertex with values proportional to the probabilities of its
children.

Application fingerprint We instantiate the application fingerprints as follows. The
size of the request r(v) (see Example 10) is given by the length of the typed word v.
The size of the response s(suggest(v)) is characterized by the size of the suggestion
list given by the Google’s auto-complete service on query v. We issued queries for all
11,678 vertices in the prefix tree to instantiate these numbers. The responses in all cases
consisted of only one packet with average size of 243 bytes and a standard deviation of
97 bytes.

Results without countermeasure For a varying path length ` = 1, . . . , 7, the initial
uncertainty is between 3.79 and 5.65 bits of Shannon Entropy, and between 1.61 and
2.85 of min-entropy (see Figure 7.6). Unlike graphs corresponding to websites, the
graph corresponding to an auto-complete field has a tree-structure, and the number of
paths is bounded by the number of terms in the dictionary D. The initial uncertainty is
highest for paths of a smaller length, and the decrease of the uncertainty for longer paths
occurs because the transition relation reveals more information: there are less words in
D sharing the same prefix. In all cases the remaining uncertainty after observing the
traffic was 0, meaning that in those cases the web application is highly vulnerable to
attacks: an attacker can infer the secret input word with probability 1.

` 1 2 3 4 5 6 7
H(X) 4.22 5.09 5.52 5.65 5.52 5.51 5.32

H∞(X) 2.7 2.85 2.65 2.39 1.96 1.71 1.61
paths 47 238 538 657 710 773 804

Figure 7.6: Auto-complete: the initial uncertainty (in terms of Shannon entropy H(X)
and min-entropy H(X|Y)) about the typed word in the auto-complete input field for a
varying path length `. # paths denotes the number of execution paths.

Results with countermeasure We also measured the vulnerability of the auto-complete
field with countermeasures applied. States were made indistinguishable by applying
flimit, which here can be practically implemented because the observations consist of
single files (see Section 7.3.3). In the following, we report on our experiments for a
path length of ` = 4, where we obtain the following results:

First, padding all vertices to a uniform size results in a maximal uncertainty of
5.65 bits of Shannon entropy and 2.39 bits of min-entropy, respectively, with an rela-
tive expected overhead of 2.9. Second, padding only vertices at the same depth to a
uniform size, the relative expected overhead drops to 0.52. The resulting uncertainty
remains maximal because, in our model, the depth of a vertex is common knowledge.
Finally, trading security for performance, we construct path-aware countermeasures

125

CHAPTER 7. AUTOMATIC EVALUATION OF PROTECTIONS AGAINST WEB
SIDE-CHANNELS

(a) Shannon entropy

(b) Min-entropy

Figure 7.7: Auto-complete: the remaining uncertainty about the typed word in the auto-
complete input field versus the relative expected overhead, for 500 randomly chosen
initial parititions, using Shannon entropy and min-entropy as a measure. Red stars
represent favored resulting partitions, i.e. resulting in a better security-versus-overhead
trade-off than close-by points. The green × denotes a partition that is only favored by
the Shannon entropy; the yellow triangle denotes a partition that is only favored by the
min-entropy.

using CoarsestBisimulation, for 500 randomly chosen initial partitions (see Sec-
tion 7.3.3). Figure 7.7 depicts the trade-off between remaining uncertainty and relative
expected overhead in this case. For example, the data show that the overhead needed
for maximal protection can be decreased by 46%, for the price of leaking of 1.44 bits
of Shannon entropy (0.54 bits of min-entropy), and by 65%, for the price of leaking
1.97 bits of Shannon entropy (0.78 bits of min-entropy). Note that in most cases the
two considered entropy measures favor the same partitions, as depicted by the partitions
corresponding to the red stars in Figure 7.7a and Figure 7.7b coincide. This is not always
the case: the partition denoted as a green × is only favored by the Shannon entropy, and
the partition denoted as a yellow triangle is only favored by the min-entropy.

126

Chapter 7. Automatic Evaluation of Protections against Web Side-Channels

7.5 Related Work

There is a long history of attacks that exploit visible patterns in encrypted web traffic.
The first attacks for extracting user information from the volume of encrypted web
traffic were proposed in by Cheng and Avnur [16]; since then there have been several
published attacks of this kind, e.g. [4, 17, 152, 153, 154, 155, 156, 157, 158, 159]. There
has been an evolution of the goals that such attacks pursue, and the of settings of
those attacks. While the goal of the attack presented in [16] is to identify a webpage
within a website accessed through HTTPS, later attacks aim at identifying the website
a user is visiting when browsing through an encrypted tunnel. Those attacks target
HTTPS connections to anonymizing proxies [17, 152, 156], SSH or a VPN connections
to anonymizing proxies [153, 154, 157, 158], data contained in anonymized NetFlow
records [155], or onion routing and web mixes [157, 172]. Chen et al. [4] turn the focus
of their attacks to web applications accessed through HTTPS and WPA, and the goal of
those attacks is the extraction of sensitive information about user’s health conditions
and financial status.

Several works propose countermeasures against those attacks. Padding, i.e., adding
noise to observations, is the standard countermeasure and has been proposed by a large
number of authors [4,16,17,152,154,156,158]. A different approach proposed by [152]
and implemented by [23] changes patterns of observations corresponding to one website
to look like patterns corresponding to another website, which allows sensitive traffic to
be camouflaged as traffic coming from popular services. Features of the TCP and HTTP
protocols were utilized in the techniques proposed by Luo et al. [24] used to build the
HTTPOS system, which offers browser-side protection from traffic analysis. We have
shown how parts of HTTPOS and other previously proposed countermeasures can be
cast in our model, and how we can use it to formally reason about them.

A number of works empirically evaluate the security of proposed countermeasures
[16,23,24,152,154,172]. There, the security is measured by comparing the performance
of attacks before and after the application of the countermeasures. In recent work, Dyer
et al. [159] exhibit shortcomings in this kind of security evaluation. In particular,
they demonstrate the inability of nine previously known countermeasures to mitigate
information leaks, even when only coarse traffic features are exploited, such as total
bandwidth or total time. In contrast, we propose a formal framework that does not
assume the use of particular attacks, but rather measures security in terms of the amount
of information leaked from the produced observations.

Sidebuster [160] is a language-based approach to countering side-channel attacks in
web applications. It uses a combination of taint-based analysis and repeated sampling to
estimate the information revealed through traffic patterns, however without an explicitly
defined system model. Liu et al. [173] present a traffic padding technique that is
backed up by formal guarantees. In contrast to our work, their model does not account
for an attacker’s prior knowledge or for the probabilistic nature of traffic patterns.
Finally, [161] propose a black-box web application crawling system that interacts with
the web application as an actual user while logging network traffic. They view an

127

CHAPTER 7. AUTOMATIC EVALUATION OF PROTECTIONS AGAINST WEB
SIDE-CHANNELS

attacker as a classifier and quantify information leaks in terms of classifier performance,
using metrics based on entropy and on the Fisher criterion. Their metrics are computed
from a small number of samples, which can deliver imprecise results for entropy [174].
In contrast, we apply our metric to the entirety of paths, which is possible due to the
random surfer assumption. Finally, work in quantitative information-flow analysis has
been applied for assessing the information leakage of anonymity protocols [175] and
cryptographic algorithms [39].

7.6 Conclusions and Future Work
We have presented a formal model that enables reasoning about side-channel attacks
against web applications. In our model, the web application’s encrypted traffic is cast
as an information-theoretic channel, which gives a clean interface to the growing body
of research in quantitative information-flow analysis and allows us to use established
notions of quantitative security. We have demonstrated that our model is expressive
enough to encompass web browsing, simple web applications, and several counter-
measures from the recent literature. Furthermore, we have demonstrated algorithms
allowing the efficient derivation of security guarantees for real systems.

A potential goal for future work is to use the presented model as a semantic basis
for language-based approaches for reasoning about side-channel attacks against web
applications, such as [160, 161]. Progress along these lines could lead to principled
analysis techniques with soundness guarantees that hold for the whole protocol stack.
Intermediate steps for this are investigating methods for approximating fnet by sampling,
investigating how quality guarantees for the sampling affect the final security guarantees.

128

8
Conclusions

8.1 Summary

In this thesis, we present a number of tools that enable the security quantification
and the choice of practical protections against side-channel attacks. For this, we
develop novel models that capture several types of side-channel adversaries: (1) timing
adversaries, who can perform attacks combining online (i.e., side-channel) and offline
(i.e., computational) steps; (2) cache adversaries of several types depending on their
observational capabilities, e.g. ones who can observe the cache state after a program’s
execution, and ones who can observe the sequence of memory addresses accessed
by a program; (3) web-traffic adversaries, who can observe traffic corresponding to
sequences of visited webpages. Based on these models, we develop the following tools.

First, we present a systematic approach for choosing an optimal protection against
timing attacks, where we make use of a number of simple but powerful tools from game
theory, information theory, and cryptography. The results we obtain are rigorous but
practical enough to justify the use of a fast but leaky implementation of ElGamal over a
defensive constant-time implementation.

Second, we present CacheAudit, the first automatic tool for the static derivation
of formal, quantitative security guarantees against cache side-channel attacks. We
demonstrate the usefulness of CacheAudit by establishing formal security guarantees
for binary executables of sorting algorithms and state-of-the-art cryptosystems such
as AES and the finalists of the eSTREAM stream cipher competition. Furthermore,
we present an extension to CacheAudit, which utilizes novel techniques that provide
support for bit-level and symbolic reasoning about pointers in the presence of dynamic
memory allocation. We apply these techniques to reason about the effectiveness of
several widely deployed side-channel countermeasures from the libgcrypt and OpenSSL
libraries, based on executable code.

Third, we present algorithms for reasoning about side-channel attacks against web
applications, as well as for generating of protections against such attacks. We apply
these algorithms on practical instances of web applications.

129

CHAPTER 8. CONCLUSIONS

8.2 Limitations and Future Work

8.2.1 Systematic Choice of Protections against Further
Side-Channel Attacks

A key motivation of this thesis is to enable the systematic choice of protections against
side-channel attacks, offering a balance between the security guarantees and the per-
formance penalties of these protections (see research question Q1 in Section 1.2). In
Chapter 3, we demonstrate an approach for choosing protections against a class of
timing attacks, using a game-theoretic model. This approach does not directly extend
to further types of side-channel attacks we investigate in this thesis: cache attacks and
web-traffic attacks. The reason for this is that the approach from Chapter 3 is facilitated
by the bounds on the security level we derive, which are not directly available for
further types of side-channel attacks. Namely, these bounds capture the probability of a
successful attack, for an adversary who collects multiple side-channel observations, and
uses the obtained information in a computational attack. Advantages of these bounds
are that they (1) capture a realistic attack scenario, and (2) have a direct economic
application: the probability of outcomes can be used for obtaining expected utilities in
decision and game theory. In the following, we discuss challenges for obtaining such
bounds for further types of side-channel attacks.

Cache Attacks In Chapters 4 to 6, the obtained bounds on cache leakage can be
used for deriving bounds on the probability of recovering the cryptographic key, for an
adversary who can make one side-channel observation (see Section 4.2). A limitation
that hinders the direct application of such bounds in the approach presented in Chapter 3
is that realistic side-channel adversaries would be able to perform multiple observations.
In cases where we obtain 0 bits of leakage, our bounds directly translate to attacks
with multiple observations; however, in cases of non-zero leakage, reasoning about
accumulation of leakage over multiple side-channel observations remains out of reach
for our analysis, and is left to future work.

Web-Traffic Attacks In Chapter 7, the proposed algorithms allow obtaining bounds
in terms of Shannon entropy, which can be used for deriving the expected number of
guesses an adversary has to make in order to determine the (secret) browsing behavior,
by passively observing the corresponding encrypted traffic (see Section 2.1). Several
limitations hinder the direct application of these bounds in the approach presented
in Chapter 3. First, the economic application of such guarantees is not directly clear.
Second, the justification of an attack consisting of multiple guesses is not clear in this
scenario: multiple guesses are justified in attacks with an offline phase, in which the cor-
rectness of a guess can be determined, e.g. in attacks aiming at recovering cryptographic
keys, where a known plaintext-ciphertext pair can be used to determine the correctness
of a key. Third, for determining the initial probability of correctly guessing the secret,

130

Chapter 8. Conclusions

assumptions on the adversaries’ prior knowledge need to be made, which may be diffi-
cult to justify. A possible direction for addressing these limitations is to investigate the
effect of side-channel leakage on further measures for confidentiality [176].

8.2.2 Performance Overhead of Countermeasures
The countermeasures we investigate in the case studies in Chapter 3 and Chapter 7 come
with provable security guarantees, however have high performance overhead compared
to the original, unprotected systems. This leads to the following open questions and
directions for future work.

• A reason for the high overhead is that we rely on conservative bounds on the
security against side-channel attacks, which overapproximate the adversary’s
capabilities. Possible ways to reduce these overheads is by deriving tighter
bounds on side-channel leakage, or by relaxing the underlying models.

• In Chapter 3, we reason about the choice of protections, requiring that they
guarantee a fixed security level, which leads to a high performance overhead. A
question that stays open is: How to reason about the more general problem of
choosing protections without requirements on the security level? An answer to
this question has to take into consideration that we rely on bounds on the security
level of protections, and deciding to reduce the security level may be unsound, e.g.
leaving a system unprotected if the defender falsely believes that the adversary
has 100% probability of breach (see discussion in Section 3.2.5).

• A further question we leave to future work is: Can the performance of state-of-
the-art fast constant-time cryptographic implementations (e.g., [29,30,31,32,33])
be improved by allowing controlled side-channel leaks, without sacrificing their
level of provable security?

131

CHAPTER 8. CONCLUSIONS

132

Bibliography

[1] P. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems,” in CRYPTO, pp. 104–113, Springer, 1996.

[2] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in CRYPTO,
Springer, 1999.

[3] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis: Concrete
results,” in Cryptographic Hardware and Embedded Systems—CHES 2001,
pp. 251–261, Springer, 2001.

[4] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in web applica-
tions: a reality today, a challenge tomorrow,” in IEEE Symposium on Security
and Privacy (SSP), pp. 191–206, IEEE, 2010.

[5] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson, “Spot
me if you can: Uncovering spoken phrases in encrypted voip conversations,” in
Security and Privacy, 2008. SP 2008. IEEE Symposium on, pp. 35–49, IEEE,
2008.

[6] D. Asonov and R. Agrawal, “Keyboard acoustic emanations,” in null, p. 3, IEEE,
2004.

[7] M. Backes, M. Dürmuth, S. Gerling, M. Pinkal, and C. Sporleder, “Acoustic
side-channel attacks on printers.,” in USENIX Security Symposium, pp. 307–322,
2010.

[8] D. Brumley and D. Boneh, “Remote timing attacks are practical,” Computer
Networks, vol. 48, no. 5, pp. 701–716, 2005.

[9] D. Bernstein, “Cache-timing attacks on AES.” http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf, 2005.

133

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

[10] C. Percival, “Cache missing for fun and profit,” in BSDCan, 2005.

[11] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures:
the case of AES,” in CT-RSA, vol. 3860 of LNCS, pp. 1–20, Springer, 2006.

[12] O. Aciiçmez, W. Schindler, and Ç. K. Koç, “Cache based remote timing attack
on the AES,” in CT-RSA, pp. 271–286, Springer, 2007.

[13] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM side channels
and their use to extract private keys,” in CCS, ACM, 2012.

[14] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low noise, L3
cache side-channel attack,” in USENIX Security Symposium, USENIX Associa-
tion, 2014.

[15] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, “The spy in the
sandbox: practical cache attacks in javascript and their implications,” in Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pp. 1406–1418, ACM, 2015.

[16] H. Cheng, H. Cheng, and R. Avnur, “Traffic analysis of ssl encrypted web
browsing,” 1998.

[17] A. Hintz, “Fingerprinting websites using traffic analysis,” in Privacy Enhancing
Technologies (PET), 2002.

[18] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a distance:
Website fingerprinting attacks and defenses,” in Proceedings of the 2012 ACM
conference on Computer and communications security, pp. 605–616, ACM,
2012.

[19] A. Kwon, M. AlSabah, D. Lazar, M. Dacier, and S. Devadas, “Circuit fingerprint-
ing attacks: Passive deanonymization of tor hidden services,” in 24th USENIX
Security Symposium (USENIX Security 15), (Washington, D.C.), pp. 287–302,
USENIX Association, Aug. 2015.

[20] J. Rizzo and T. Duong, “The CRIME attack,” in EKOparty Security Conference,
vol. 2012, 2012.

[21] Y. Gluck, N. Harris, and A. Prado, “BREACH: reviving the CRIME attack,”
Unpublished manuscript, 2013.

[22] T. Kim, M. Peinado, and G. Mainar-Ruiz, “StealthMem: System-level protection
against cache-based side channel attacks in the cloud,” in 19th USENIX Security
Symposium, USENIX, 2012.

134

[23] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morphing: An efficient
defense against statistical traffic analysis,” in Proc. Network and Distributed
Systems Symposium (NDSS), The Internet Society, 2009.

[24] X. Luo, P. Zhou, E. W. W. Chan, W. Lee, and R. K. C. Chang, “HTTPOS:
Sealing information leaks with browser-side obfuscation of encrypted flows,” in
Proc. Network and Distributed Systems Symposium (NDSS), The Internet Society,
2011.

[25] Z. Wang and R. B. Lee, “New cache designs for thwarting software cache-based
side channel attacks,” in ISCA, pp. 494–505, ACM, 2007.

[26] S. Gueron, “Intel advanced encryption standard (aes) instructions set,” Intel
White Paper, Rev, vol. 3, 2009.

[27] S. Gueron, “Intel’s new aes instructions for enhanced performance and security,”
in Fast Software Encryption, pp. 51–66, Springer, 2009.

[28] Intel Corporation, “ARK Processor Feature Filter.” http://ark.intel.com/
search/advanced?s=t&AESTech=false. Accessed: 15 December 2015.

[29] E. Käsper and P. Schwabe, “Faster and timing-attack resistant AES-GCM,” in
CHES, pp. 1–17, 2009.

[30] M. Hamburg, “Accelerating aes with vector permute instructions,” in Crypto-
graphic Hardware and Embedded Systems-CHES 2009, pp. 18–32, Springer,
2009.

[31] D. J. Bernstein, T. Lange, and P. Schwabe, “The security impact of a new
cryptographic library,” in LATINCRYPT, pp. 159–176, Springer, 2012.

[32] D. J. Bernstein, T. Chou, and P. Schwabe, “Mcbits: fast constant-time code-based
cryptography,” in Cryptographic Hardware and Embedded Systems-CHES 2013,
pp. 250–272, Springer, 2013.

[33] J. W. Bos, C. Costello, H. Hisil, and K. Lauter, “High-performance scalar multipli-
cation using 8-dimensional glv/gls decomposition,” in Cryptographic Hardware
and Embedded Systems-CHES 2013, pp. 331–348, Springer, 2013.

[34] OpenSSL Software Foundation, “OpanSSL Changelog.” https://www.
openssl.org/news/changelog.txt. Accessed: 16 December 2015.

[35] Moritz Schulte, “Libgcrypt 1.1.42 released.” https://lists.gnupg.org/
pipermail/gnupg-announce/2003q3/000155.html. Accessed: 16 Decem-
ber 2015.

135

http://ark.intel.com/search/advanced?s=t&AESTech=false
http://ark.intel.com/search/advanced?s=t&AESTech=false
https://www.openssl.org/news/changelog.txt
https://www.openssl.org/news/changelog.txt
 https://lists.gnupg.org/pipermail/gnupg-announce/2003q3/000155.html
 https://lists.gnupg.org/pipermail/gnupg-announce/2003q3/000155.html

[36] ARM Limited, “PolarSSL 1.2.9 released.” https://polarssl.org/

tech-updates/releases/polarssl-1.2.9-released. Accessed: 16 De-
cember 2015.

[37] W. Schindler, “Exponent blinding may not prevent timing attacks on rsa,”

[38] D. Clark, S. Hunt, and P. Malacaria, “Quantitative Information Flow, Relations
and Polymorphic Types,” Journal of Logic and Computation, vol. 18, no. 2,
pp. 181–199, 2005.

[39] B. Köpf and D. Basin, “An Information-Theoretic Model for Adaptive Side-
Channel Attacks,” in CCS, pp. 286–296, ACM, 2007.

[40] M. Backes, B. Köpf, and A. Rybalchenko, “Automatic discovery and quantifica-
tion of information leaks,” in SSP, pp. 141–153, IEEE, 2009.

[41] B. Köpf and A. Rybalchenko, “Approximation and randomization for quantitative
information-flow analysis,” in CSF, pp. 3–14, IEEE, 2010.

[42] J. Heusser and P. Malacaria, “Quantifying information leaks in software,” in
ACSAC, pp. 261–269, ACM, 2010.

[43] G. Doychev and B. Köpf, “Rational Protection Against Timing Attacks,” in Proc.
28th IEEE Computer Security Foundations Symposium (CSF’15), IEEE, 2015.

[44] G. Doychev, D. Feld, B. Köpf, L. Mauborgne, and J. Reineke, “CacheAudit: A
Tool for the Static Analysis of Cache Side Channels,” in 22nd USENIX Security
Symposium, USENIX, 2013.

[45] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke, “Cacheaudit: A tool for
the static analysis of cache side channels,” ACM Transactions on Information
and System Security, vol. 18, pp. 4:1–4:32, June 2015.

[46] G. Doychev and B. Köpf, “Rigorous analysis of software countermeasures against
cache attacks,” CoRR arXiv, vol. abs/1603.02187, March 2016.

[47] M. Backes, G. Doychev, and B. Köpf, “Preventing Side-Channel Leaks in Web
Traffic: A Formal Approach,” in Proc. 20th Network and Distributed Systems
Security Symposium (NDSS), Internet Society, 2013.

[48] G. Doychev, “Analysis and mitigation of information leaks in web applications,”
Master’s thesis, Saarland University, Germany, 2012.

[49] G. Smith, “On the foundations of quantitative information flow,” in FoSSaCS,
Springer, 2009.

136

https://polarssl.org/tech-updates/releases/polarssl-1.2.9-released
https://polarssl.org/tech-updates/releases/polarssl-1.2.9-released

[50] C.-Y. Hsiao, C.-J. Lu, and L. Reyzin, “Conditional computational entropy, or to-
ward separating pseudoentropy from compressibility,” in EUROCRYPT, pp. 169–
186, Springer, 2007.

[51] C. E. Shannon, “A mathematical theory of communication,” ACM SIGMOBILE
Mobile Computing and Communications Review, vol. 5, no. 1, pp. 3–55, 2001.

[52] J. L. Massey, “Guessing and Entropy,” in Proc. 1994 IEEE Symposium on
Information Theory (ISIT 1994), p. 204, IEEE, 1994.

[53] B. Köpf and M. Dürmuth, “A provably secure and efficient countermeasure
against timing attacks,” in CSF, pp. 324–335, IEEE, 2009.

[54] M. Blum and S. Micali, “How to generate cryptographically strong sequences of
pseudorandom bits,” SIAM journal on Computing, vol. 13, no. 4, pp. 850–864,
1984.

[55] D. Aggarwal and U. Maurer, “The leakage-resilience limit of a computational
problem is equal to its unpredictability entropy,” in ASIACRYPT, pp. 686–701,
Springer, 2011.

[56] V. Shoup, “Lower bounds for discrete logarithms and related problems,” in
EUROCRYPT, pp. 256–266, Springer, 1997.

[57] U. Maurer, “Abstract models of computation in cryptography,” in Cryptography
and Coding, pp. 1–12, Springer, 2005.

[58] S. Krenn, K. Pietrzak, A. Campus, A. Wadia, and D. Wichs, “A counterexample
to the chain rule for conditional hill entropy,” 2014.

[59] D. E. Denning, Cryptography and Data Security. Addison-Wesley, 1982.

[60] D. Clark, S. Hunt, and P. Malacaria, “A static analysis for quantifying information
flow in a simple imperative language,” JCS, vol. 15, no. 3, pp. 321–371, 2007.

[61] K. Chatzikokolakis, C. Palamidessi, and P. Panangaden, “Anonymity protocols
as noisy channels,” Information and Computation, vol. 206, pp. 378–401, 2008.

[62] C. Braun, K. Chatzikokolakis, and C. Palamidessi, “Quantitative notions of
leakage for one-try attacks,” Electronic Notes in Theoretical Computer Science,
vol. 249, pp. 75–91, 2009.

[63] M. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith, “Measuring infor-
mation leakage using generalized gain functions,” in CSF, pp. 265–279, IEEE,
2012.

[64] J. K. Millen, “Covert Channel Capacity,” in Proc. 1987 IEEE Symposium on
Security and Privacy (Oakland 1987), pp. 60–66, IEEE, 1987.

137

[65] G. Lowe, “Quantifying Information Flow,” in Proc. 15th IEEE Computer Security
Foundations Symposium (CSFW 2002), pp. 18–31, IEEE, 2002.

[66] B. Köpf, L. Mauborgne, and M. Ochoa, “Automatic quantification of cache
side-channels,” in CAV, pp. 564–580, Springer, 2012.

[67] AbsInt Angewandte Informatik GmbH, “AbsInt aiT Worst-Case Execution Time
Analyzers.” http://www.absint.com/ait/, January 2015.

[68] J. Newsome, S. McCamant, and D. Song, “Measuring channel capacity to distin-
guish undue influence,” in PLAS, pp. 73–85, ACM, 2009.

[69] Z. Meng and G. Smith, “Calculating bounds on information leakage using two-bit
patterns,” in PLAS, ACM, 2011.

[70] M. Boreale and F. Pampaloni, “Quantitative multirun security under active adver-
saries,” in QEST, pp. 158–167, IEEE, 2012.

[71] S. McCamant and M. D. Ernst, “Quantitative information flow as network flow
capacity,” in Proc. ACM Conf. on Programming Language Design and Imple-
mentation (PLDI ’08), pp. 193–205, ACM, 2008.

[72] P. Mardziel, M. S. Alvim, M. W. Hicks, and M. R. Clarkson, “Quantifying
information flow for dynamic secrets,” in SSP, 2014.

[73] D. Zhang, A. Askarov, and A. C. Myers, “Predictive mitigation of timing channels
in interactive systems,” in CCS, pp. 563–574, ACM, 2011.

[74] M. Tambe, Security and Game Theory: Algorithms, Deployed Systems, Lessons
Learned. Cambridge University Press, 2011.

[75] S. Bhattacharya, V. Conitzer, and K. Munagala, “Approximation algorithm for
security games with costly resources,” in Internet and Network Economics,
pp. 13–24, Springer, 2011.

[76] J. Blocki, N. Christin, A. Datta, A. D. Procaccia, and A. Sinha, “Audit games,”
in IJCAI, pp. 41–47, AAAI Press, 2013.

[77] R. Shokri, G. Theodorakopoulos, C. Troncoso, J.-P. Hubaux, and J.-Y. Le Boudec,
“Protecting location privacy: optimal strategy against localization attacks,” in
CCS, pp. 617–627, ACM, 2012.

[78] R. Shokri, “Privacy games: Optimal user-centric data obfuscation,” Proceedings
on Privacy Enhancing Technologies, vol. 2015, no. 2, pp. 299–315, 2015.

[79] M. Khouzani, P. Mardziel, C. Cid, and M. Srivatsa, “Picking vs. guessing secrets:
A game-theoretic analysis,” in Computer Security Foundations Symposium (CSF),
2015 IEEE 28th, pp. 243–257, IEEE, 2015.

138

http://www.absint.com/ait/

[80] J. A. Garay, J. Katz, U. Maurer, B. Tackmann, and V. Zikas, “Rational protocol
design: Cryptography against incentive-driven adversaries,” in FOCS, pp. 648–
657, 2013.

[81] S. Dziembowski and K. Pietrzak, “Leakage-resilient cryptography,” in FOCS,
IEEE, 2008.

[82] Y. Yu, F.-X. Standaert, O. Pereira, and M. Yung, “Practical leakage-resilient
pseudorandom generators,” in CCS, pp. 141–151, ACM, 2010.

[83] P. C. Kocher, “Leak-resistant cryptographic indexed key update,” Mar. 25 2003.
US Patent 6,539,092.

[84] G. Barthe, B. Köpf, L. Mauborgne, and M. Ochoa, “Leakage Resilience against
Concurrent Cache Attacks,” in Proc. 3rd Conference on Principles of Security
and Trust (POST ’14), Springer, 2014.

[85] S. Belaı̈d, V. Grosso, and F.-X. Standaert, “Masking and leakage-resilient primi-
tives: One, the other (s) or both?,” Cryptography and Communications, vol. 7,
no. 1, pp. 163–184, 2015.

[86] J. B. Almeida, M. Barbosa, J. S. Pinto, and B. Vieira, “Formal verification of
side-channel countermeasures using self-composition,” Sci. Comput. Program.,
vol. 78, no. 7, pp. 796–812, 2013.

[87] G. Barthe, G. Betarte, J. Campo, C. Luna, and D. Pichardie, “System-level non-
interference for constant-time cryptography,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1267–1279,
ACM, 2014.

[88] J. B. Almeida12, M. Barbosa13, G. Barthe, and F. Dupressoir, “Verifiable side-
channel security of cryptographic implementations: constant-time mee-cbc,” in
Foundations of Software Engineering (FSE), 2016.

[89] S. Jana and V. Shmatikov, “Memento: Learning secrets from process footprints,”
in SSP, pp. 143–157, IEEE, 2012.

[90] D. Brumley and D. Boneh, “Remote timing attacks are practical,” Computer
Networks, vol. 48, no. 5, pp. 701–716, 2005.

[91] D. Fudenberg and J. Tirole, Game Theory. MIT Press, 1991.

[92] “Functional safety of electrical, electronic and programmable electronic safety
related systems–IEC 61508.” www.iec.ch/functionalsafety/.

[93] “ECRYPT II Yearly Report on Algorithms and Key Lengths (2011),” June 2011.

139

www.iec.ch/functionalsafety/

[94] E. Zermelo, “Über eine Anwendung der Mengenlehre auf die Theorie des
Schachspiels,” in Proc. Fifth International Congress of Mathematicians, vol. 2,
pp. 501–504, II, Cambridge UP, Cambridge, 1913.

[95] H. W. Kuhn, “Extensive games and the problem of information,” Contributions
to the Theory of Games, vol. 2, no. 28, pp. 193–216, 1953.

[96] V. Conitzer and T. Sandholm, “Computing the optimal strategy to commit to,” in
EC, pp. 82–90, ACM, 2006.

[97] E. Kiltz and K. Pietrzak, “Leakage resilient elgamal encryption,” in ASIACRYPT,
Springer, 2010.

[98] N. Heninger and H. Shacham, “Reconstructing rsa private keys from random key
bits,” in CRYPTO, pp. 1–17, Springer, 2009.

[99] B. Köpf and G. Smith, “Vulnerability bounds and leakage resilience of blinded
cryptography under timing attacks,” in CSF, pp. 44–56, IEEE, 2010.

[100] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable interface to
hardware performance counters,” in DoD HPCMP Users Group Conference,
1999.

[101] J. W. Bos, “Constant time modular inversion,” Journal of Cryptographic Engi-
neering, vol. 4, no. 4, pp. 275–281, 2014.

[102] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied
cryptography. CRC press, 1996.

[103] D. Grund, Static Cache Analysis for Real-Time Systems – LRU, FIFO, PLRU.
PhD thesis, Saarland University, 2012.

[104] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games - bringing access-based
cache attacks on AES to practice,” in SSP, pp. 490–505, IEEE, 2011.

[105] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data,” SIAM J. Comput.,
vol. 38, no. 1, pp. 97–139, 2008.

[106] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model for
static analysis of programs by construction of approximation of fixpoints,” in
POPL, pp. 238–252, 1977.

[107] L. Mauborgne and X. Rival, “Trace partitioning in abstract interpretation based
static analyzers,” in ESOP, vol. 3444 of LNCS, pp. 5–20, Springer, 2005.

[108] P. Cousot, R. Cousot, and L. Mauborgne, “Theories, solvers and static analysis
by abstract interpretation,” Journal of the ACM, vol. 59, no. 6, p. 31, 2012.

140

[109] P. Cousot and R. Cousot, “Systematic design of program analysis frameworks,”
in POPL, 1979.

[110] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my
cloud: exploring information leakage in third-party compute clouds,” in CCS,
pp. 199–212, ACM, 2009.

[111] O. Aciiçmez and Ç. K. Koç, “Trace-driven cache attacks on AES,” in ICICS,
pp. 112–121, Springer, 2006.

[112] S. Gueron, “Intel Advanced Encryption Standard (AES) Instructions Set.” http:
//software.intel.com/file/24917, 2010.

[113] D. Zhang, A. Askarov, and A. C. Myers, “Language-based control and mitigation
of timing channels,” in PLDI, pp. 99–110, ACM, 2012.

[114] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter, “Practical
mitigations for timing-based side-channel attacks on modern x86 processors,” in
SSP, pp. 45–60, IEEE, 2009.

[115] Ú. Erlingsson and M. Abadi, “Operating system protection against side-channel
attacks that exploit memory latency,” tech. rep., 2007.

[116] ECRYPT, “The eSTREAM portfolio in 2012.” http://www.ecrypt.eu.org/
documents/D.SYM.10-v1.pdf, 2012.

[117] A. Abel and J. Reineke, “Measurement-based modeling of the cache replacement
policy,” in Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2013 IEEE 19th, pp. 65–74, IEEE, 2013.

[118] C. Ferdinand, F. Martin, R. Wilhelm, and M. Alt, “Cache behavior prediction
by abstract interpretation,” Science of Computer Programming, vol. 35, no. 2,
pp. 163 – 189, 1999.

[119] A. Chlipala, “Modular development of certified program verifiers with a proof
assistant,” in ICFP, pp. 160–171, ACM, 2006.

[120] J. Kinder, F. Zuleger, and H. Veith, “An abstract interpretation-based framework
for control flow reconstruction from binaries,” in VMCAI, pp. 214–228, 2009.

[121] F. Bourdoncle, “Efficient chaotic iteration strategies with widenings,” in FMPA,
Springer, 1993.

[122] D. Feld, “Relational Domains for the Quantification of Cache Side Channels,”
Master’s thesis, Saarland University, 2013.

141

http://software.intel.com/file/24917
http://software.intel.com/file/24917
http://www.ecrypt.eu.org/documents/D.SYM.10-v1.pdf
http://www.ecrypt.eu.org/documents/D.SYM.10-v1.pdf

[123] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm, “The influence
of processor architecture on the design and the results of WCET tools,” IEEE
Proceedings on Real-Time Systems, vol. 91, no. 7, pp. 1038–1054, 2003.

[124] H. Wu, “The Stream Cipher HC-128.” http://www.ecrypt.eu.org/stream/
p3ciphers/hc/hc128_p3.pdf, 2004.

[125] E. Zenner, “A cache timing analysis of hc-256,” in Selected Areas in Cryptogra-
phy, Springer, 2009.

[126] G. Paul and S. Raizada, “Impact of extending side channel attack on cipher
variants: a case study with the hc series of stream ciphers,” in Security, Privacy,
and Applied Cryptography Engineering, pp. 32–44, Springer, 2012.

[127] M. Boesgaard, M. Vesterager, T. Christensen, and E. Zenner, “The Stream Ci-
pher Rabbit.” http://www.ecrypt.eu.org/stream/p3ciphers/rabbit/
rabbit_p3.pdf, 2005.

[128] D. Bernstein, “Leaks.” http://cr.yp.to/streamciphers/leaks.html,
January 2015.

[129] D. Bernstein, “Snuffle 2005: the Salsa20 encryption function.” http://cr.yp.
to/snuffle.html, January 2015.

[130] C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin, A. Gouget,
L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, and H. Sibert, “Sosemanuk, a
fast software-oriented stream cipher.” http://www.ecrypt.eu.org/stream/
p3ciphers/sosemanuk/sosemanuk_p3.pdf, 2005.

[131] G. Leander, E. Zenner, and P. Hawkes, “Cache timing analysis of lfsr-based
stream ciphers,” in Cryptography and Coding, pp. 433–445, Springer, 2009.

[132] J. Agat and D. Sands, “On confidentiality and algorithms,” in SSP, pp. 64–77,
IEEE, 2001.

[133] Code Beach, “Sorting algorithms.” http://www.codebeach.com/2008/09/
sorting-algorithms-in-c.html, 2008. Accessed: 7 January 2015.

[134] D. Cock, Q. Ge, T. Murray, and G. Heiser, “The last mile: An empirical study of
timing channels on sel4,” in CCS, ACM, 2014.

[135] M. Tiwari, J. Oberg, X. Li, J. Valamehr, T. E. Levin, B. Hardekopf, R. Kastner,
F. T. Chong, and T. Sherwood, “Crafting a usable microkernel, processor, and I/O
system with strict and provable information flow security,” in ISCA, pp. 189–200,
ACM, 2011.

142

http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/rabbit/rabbit_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/rabbit/rabbit_p3.pdf
http://cr.yp.to/streamciphers/leaks.html
http://cr.yp.to/snuffle.html
http://cr.yp.to/snuffle.html
http://www.ecrypt.eu.org/stream/p3ciphers/sosemanuk/sosemanuk_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/sosemanuk/sosemanuk_p3.pdf
http://www.codebeach.com/2008/09/sorting-algorithms-in-c.html
http://www.codebeach.com/2008/09/sorting-algorithms-in-c.html

[136] L. Domnitser, A. Jaleel, J. Loew, N. B. Abu-Ghazaleh, and D. Ponomarev, “Non-
monopolizable caches: Low-complexity mitigation of cache side channel attacks,”
TACO, vol. 8, no. 4, p. 35, 2012.

[137] Z. Wang and R. B. Lee, “A novel cache architecture with enhanced performance
and security,” in 41st IEEE/ACM Intl. Symposium on Microarchitecture (MICRO),
pp. 83–93, 2008.

[138] G. Barthe, G. Betarte, J. D. Campo, C. Luna, and D. Pichardie, “System-level
non-interference for constant-time cryptography.” Cryptology ePrint Archive,
Report 2014/422, 2014.

[139] M. B. Baig, C. Fitzsimons, S. Balasubramanian, R. Sion, and D. E. Porter,
“Cloudflow: Cloud-wide policy enforcement using fast vm introspection,” in
IC2E, IEEE, 2014.

[140] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource management for isolation
enhanced cloud services,” in Proc. ACM Cloud Computing Security Workshop,
(CCSW), pp. 77–84, 2009.

[141] B. Ford, “Plugging side-channel leaks with timing information flow control,” in
HotCloud, USENIX, 2012.

[142] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The program counter
security model: Automatic detection and removal of control-flow side channel
attacks,” in Information Security and Cryptology-ICISC 2005, pp. 156–168,
Springer, 2006.

[143] J. Agat, “Transforming out timing leaks,” in POPL 2000, pp. 40–53, ACM, 2000.

[144] D. Hedin and D. Sands, “Timing aware information flow security for a JavaCard-
like bytecode,” ENTCS, vol. 141, no. 1, pp. 163–182, 2005.

[145] Y. Yarom, D. Genkin, and N. Heninger, “Cachebleed: A timing attack on openssl
constant time rsa.” Cryptology ePrint Archive, Report 2016/224, March 2016.
http://eprint.iacr.org/.

[146] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel
attacks are practical,” in IEEE Symposium on Security and Privacy, pp. 605–622,
IEEE Computer Society, 2015.

[147] S. Gueron, “Efficient software implementations of modular exponentiation,” J.
Cryptographic Engineering, vol. 2, no. 1, pp. 31–43, 2012.

[148] G. Barthe, T. Rezk, and M. Warnier, “Preventing Timing Leaks Through Trans-
actional Branching Instructions,” in Proc. 3rd Workshop on Quantitative Aspects
of Programming Languages (QAPL 2006), Electronic Notes in Theoretical Com-
puter Science (ENTCS), pp. 33–55, Elsevier, 2005.

143

http://eprint.iacr.org/

[149] H. Mantel and A. Starostin, “Transforming out timing leaks, more or less,” in
ESORICS, pp. 447–467, Springer, 2015.

[150] J. Agat, “Transforming out timing leaks in practice: An experiment in imple-
menting programming language-based methods for confidentiality,” 2000.

[151] A. Langley, “Checking that functions are constant time with valgrind.”
https://www.imperialviolet.org/2010/04/01/ctgrind.html, 2010. Accessed: 6
March 2016.

[152] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N. Padmanabhan, and L. Qiu,
“Statistical identification of encrypted web browsing traffic,” in IEEE Symposium
on Security and Privacy (SSP), pp. 19–30, IEEE, 2002.

[153] G. Bissias, M. Liberatore, D. Jensen, and B. N. Levine, “Privacy Vulnerabilities
in Encrypted HTTP Streams,” in Proc. Privacy Enhancing Technologies (PET),
pp. 1–11, Springer, 2005.

[154] M. Liberatore and B. N. Levine, “Inferring the Source of Encrypted HTTP
Connections,” in Proc. ACM Conference on Computer and Communications
Security (CCS), pp. 255–263, ACM, 2006.

[155] S. E. Coull, M. P. Collins, C. V. Wright, F. Monrose, and M. K. Reiter, “On
web browsing privacy in anonymized netflows,” in Proc. 16th USENIX Security
Symposium, pp. 23:1–23:14, USENIX Association, 2007.

[156] G. Danezis, “Traffic analysis of the http protocol over tls,” 2007.

[157] D. Herrmann, R. Wendolsky, and H. Federrath, “Website fingerprinting: attacking
popular privacy enhancing technologies with the multinomial naive-bayes classi-
fier,” in Proc. ACM Workshop on Cloud Computing Security (CCSW), pp. 31–42,
ACM, 2009.

[158] L. Lu, E.-C. Chang, and M. C. Chan, “Website Fingerprinting and Identification
Using Ordered Feature Sequences,” in Proc. 15th European Symposium on
Research in Computer Security (ESORICS), Springer, 2010.

[159] K. Dyer, S. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-Boo, I still see you:
Why Traffic Analysis Countermeasures Fail,” in IEEE Symposium on Security
and Privacy (SSP), pp. 332–346, IEEE, 2012.

[160] K. Zhang, Z. Li, R. Wang, X. Wang, and S. Chen, “Sidebuster: automated detec-
tion and quantification of side-channel leaks in web application development,”
in Proc. ACM Conference on Computer and Communication Security (CCS),
pp. 595–606, ACM, 2010.

144

[161] P. Chapman and D. Evans, “Automated black-box detection of side-channel
vulnerabilities in web applications,” in Proc. 18th ACM Conference on Computer
and Communications Security (CCS), pp. 263–274, ACM, 2011.

[162] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation rank-
ing: Bringing order to the web.,” Technical Report 1999-66, Stanford InfoLab,
November 1999.

[163] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to
Algorithms. McGraw-Hill Higher Education, 2nd ed., 2001.

[164] R. Sarukkai, “Link prediction and path analysis using markov chains,” Computer
Networks, vol. 33, no. 1-6, pp. 377–386, 2000.

[165] M. Eirinaki, M. Vazirgiannis, and D. Kapogiannis, “Web path recommendations
based on page ranking and markov models,” in Proc. 7th ACM Workshop on Web
Information and Data Management (WIDM), pp. 2–9, ACM, 2005.

[166] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge University
Press, 1995.

[167] M. Eirinaki and M. Vazirgiannis, “Usage-Based PageRank for Web Personaliza-
tion,” in Proc. 5th IEEE Intl. Conference on Data Mining (ICDM), pp. 130–137,
IEEE, 2005.

[168] K. G. Larsen and A. Skou, “Bisimulation through probabilistic testing,” Inf.
Comput., vol. 94, no. 1, pp. 1–28, 1991.

[169] J. Kemeny and J. Snell, Finite Markov Chains. Undergraduate Texts in Mathe-
matics, Springer-Verlag, 1960.

[170] S. Derisavi, H. Hermanns, and W. H. Sanders, “Optimal state-space lumping in
markov chains,” Inf. Process. Lett., vol. 87, no. 6, pp. 309–315, 2003.

[171] C. Fellbaum, ed., WordNet: an electronic lexical database. MIT Press, 1998.

[172] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website Fingerprinting in
Onion Routing Based Anonymization Networks,” in Proc. ACM Workshop on
Privacy in the Electronic Society (WPES), ACM, 2011.

[173] W. M. Liu, L. Wang, K. Ren, P. Cheng, and M. Debbabi, “k-indistinguishable
traffic padding in web applications,” in Proc. Privacy Enhancing Technologies
(PET), pp. 79–99, Springer, 2012.

[174] T. Batu, S. Dasgupta, R. Kumar, and R. Rubinfeld, “The complexity of approxi-
mating entropy,” in Proc. 34th ACM Symposium on Theory of Computing (STOC
2002), pp. 678–687, ACM, 2002.

145

[175] K. Chatzikokolakis, C. Palamidessi, and P. Panangaden, “Anonymity protocols
as noisy channels,” Inf. Comput., vol. 206, no. 2-4, pp. 378–401, 2008.

[176] C. Dwork, “Differential Privacy,” in Proc. 33rd Intl. Colloquium on Automata,
Languages and Programming (ICALP), pp. 1–12, Springer, 2006.

146

	1 Introduction
	1.1 Trade-offs in Side-Channel Protection
	1.2 Research Questions
	1.3 Contributions
	1.4 Thesis Outline
	1.5 Thesis Publications

	2 Background and Related Work
	2.1 Information-Theoretic Notions
	2.1.1 Entropy Definitions
	2.1.2 Chain Rules

	2.2 Related Work

	I Timing Attack Protection
	3 Rational Protection Against Timing Attacks
	3.1 Introduction
	3.2 Choice of Optimal Protection
	3.2.1 Motivating Example
	3.2.2 Countermeasure Configuration as a Game
	3.2.3 Utilities of the Players
	3.2.4 Solving the Game
	3.2.5 Soundness of Solutions Based on Probability Bounds

	3.3 Bounds on the Probability of Key Recovery
	3.3.1 Our Approach
	3.3.2 Generic Algorithms for Computing Discrete Logarithms
	3.3.3 Blinded Side-Channels
	3.3.4 Bounds for Combined Adversaries

	3.4 Computing the Equilibrium
	3.4.1 Adversary's Optimization Problem
	3.4.2 Defender's Optimization Problem

	3.5 Case Study
	3.5.1 Experimental Setup
	3.5.2 ElGamal Implementation in Libgcrypt
	3.5.3 Constant-Time ElGamal
	3.5.4 Results
	3.5.4.1 Varying the Modulus Size
	3.5.4.2 Varying the Access Rate acc
	3.5.4.3 Varying the Key Deployment Time
	3.5.4.4 Using a Safe Prime Modulus
	3.5.4.5 Varying the Number of Buckets

	3.5.5 Use Cases

	3.6 Related Work
	3.7 Conclusions and Future Work

	II Cache Attack Protection
	4 Static Analysis of Cache Side-Channels
	4.1 Caches and Programs
	4.1.1 A Primer on Caches
	4.1.2 Programs and Computations
	4.1.3 Cache Updates and Cache Effects
	4.1.4 Replacement Policies Defined by Permutations

	4.2 Side-Channels
	4.3 Automatic Quantification of Cache Side-Channels
	4.3.1 Sound Abstraction of Leakage
	4.3.2 Abstraction Using a Control Flow Graph
	4.3.3 Local Soundness
	4.3.4 Soundness of Delivered Bounds

	5 CacheAudit: A Tool for the Static Analysis of Cache Side-Channels
	5.1 Introduction
	5.2 Illustrative Example
	5.3 Adversary Model
	5.3.1 Adversary Views
	5.3.2 Adversarially Chosen Input

	5.4 Tool Design and Implementation
	5.4.1 Control Flow Reconstruction
	5.4.2 Iterator
	5.4.3 Abstract Domains

	5.5 Abstract Domains for Cache Adversaries
	5.5.1 Domains for cache states
	5.5.2 A Domain for Traces
	5.5.3 A Domain for Time

	5.6 Case Studies
	5.6.1 AES
	5.6.2 The eSTREAM Portfolio
	5.6.2.1 HC-128
	5.6.2.2 Rabbit
	5.6.2.3 Salsa20
	5.6.2.4 Sosemanuk

	5.6.3 Sorting Algorithms
	5.6.4 Discussion

	5.7 Related Work
	5.8 Challenges for Future Work
	5.9 Conclusions

	6 Rigorous Analysis of Software Countermeasures against Cache Attacks
	6.1 Introduction
	6.2 Illustrative Example
	6.3 Security Against Memory Trace Attacks
	6.3.1 A Hierarchy of Memory Trace Observers
	6.3.2 Quantifying Leaks

	6.4 Abstract Domain for Cache-Aware Pointer Arithmetic
	6.4.1 Representation
	6.4.2 Concretization and Counting
	6.4.3 Update

	6.5 Abstract Domains for Memory Access Traces
	6.5.1 Representation
	6.5.2 Concretization and Counting
	6.5.3 Update and Join

	6.6 Case Study
	6.6.1 Tool building
	6.6.2 Target Implementations
	6.6.3 Square-and-Multiply Modular Exponentiation
	6.6.4 Windowed Modular Exponentiation
	6.6.5 Discussion
	6.6.6 Performance

	6.7 Related Work
	6.8 Conclusions

	III Web-Traffic Attack Protection
	7 Automatic Evaluation of Protections against Web Side-Channels
	7.1 Introduction
	7.2 Web-Traffic as an Information-Theoretic Channel
	7.2.1 Threat Scenario
	7.2.2 Basic Model

	7.3 Algorithms for Practical Evaluation of Web Applications
	7.3.1 Modeling User Behavior as a Markov chain
	7.3.2 Computing the Initial Uncertainty
	7.3.2.1 Initial Uncertainty Based on Stationary Distributions
	7.3.2.2 Using PageRank for Practical Computation of the Initial Uncertainty

	7.3.3 Constructing Path-Aware Countermeasures
	7.3.3.1 Ensuring Indistinguishability of Paths
	7.3.3.2 Implementing Path-Aware Countermeasures

	7.4 Case Studies
	7.4.1 Web Navigation
	7.4.2 Auto-Complete Input Field

	7.5 Related Work
	7.6 Conclusions and Future Work

	8 Conclusions
	8.1 Summary
	8.2 Limitations and Future Work
	8.2.1 Systematic Choice of Protections against Further Side-Channel Attacks
	8.2.2 Performance Overhead of Countermeasures

	Bibliography

